×

A comprehensive study on Milne-type inequalities with tempered fractional integrals. (English) Zbl 1541.26042

Summary: In the framework of tempered fractional integrals, we obtain a fundamental identity for differentiable convex functions. By employing this identity, we derive several modifications of fractional Milne inequalities, providing novel extensions to the domain of tempered fractional integrals. The research comprehensively examines significant functional classes, including convex functions, bounded functions, Lipschitzian functions, and functions of bounded variation.

MSC:

26D15 Inequalities for sums, series and integrals
26D10 Inequalities involving derivatives and differential and integral operators
26D07 Inequalities involving other types of functions

References:

[1] Ali, M. A.; Budak, H.; Michal, F.; Sundas, K., A new version of q-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions, Math. Slovaca, 73, 2, 369-386, 2023 · Zbl 1508.26012 · doi:10.1515/ms-2023-0029
[2] Alomari, M. W., A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36, 5-15, 2013 · Zbl 1382.26019
[3] Alomari, M. W.; Liu, Z., New error estimations for the Milne’s quadrature formula in terms of at most first derivatives, Konuralp J. Math., 1, 1, 17-23, 2013 · Zbl 1282.26028
[4] Bohner, M.; Kashuri, A.; Mohammed, P.; Valdes, J. E.N., Hermite-Hadamard-type inequalities for conformable integrals, Hacet. J. Math. Stat., 51, 3, 775-786, 2022 · Zbl 1513.26021 · doi:10.15672/hujms.946069
[5] Bosch, P.; Rodríguez, J. M.; Sigarreta, J. M., On new Milne-type inequalities and applications, J. Inequal. Appl., 2023, 1, 2023 · Zbl 1532.26021 · doi:10.1186/s13660-022-02910-0
[6] Budak, H., Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40, 1, 199-215, 2021 · Zbl 1479.26020 · doi:10.22199/issn.0717-6279-2021-01-0013
[7] Budak, H.; Hyder, A. A., Enhanced bounds for Riemann-Liouville fractional integrals: novel variations of Milne inequalities, AIMS Math., 8, 12, 30760-30776, 2023 · doi:10.3934/math.20231572
[8] Budak, H.; Kara, H.; Sarikaya, M. Z.; Kiriş, M. E., New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21, 2, 665-678, 2020 · Zbl 1474.26087 · doi:10.18514/MMN.2020.3073
[9] Budak, H.; Kösem, P.; Kara, H., On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023, 1, 2023 · Zbl 1532.26008 · doi:10.1186/s13660-023-02921-5
[10] Buschman, R. G., Decomposition of an integral operator by use of Mikusiński calculus, SIAM J. Math. Anal., 3, 1, 83-85, 1972 · Zbl 0233.45019 · doi:10.1137/0503010
[11] Cao, J., Li, C., Chen, Y.: On tempered and substantial fractional calculus. In: pp. 1-6 (2014)
[12] Chaudhry, M. A.; Zubair, S. M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55, 1, 99-124, 1994 · Zbl 0833.33002 · doi:10.1016/0377-0427(94)90187-2
[13] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration, 2007 · Zbl 1139.65016
[14] Demir, İ., A new approach of Milne-type inequalities based on proportional Caputo-hybrid operator: a new approach for Milne-type inequalities, J. Adv. Appl. Comput. Math., 10, 102-119, 2023 · doi:10.15377/2409-5761.2023.10.10
[15] Desta, H. D.; Budak, H.; Kara, H., New perspectives on fractional Milne-type inequalities: insights from twice-differentiable functions, Univers. J. Math. Appl., 7, 1, 30-37, 2024 · doi:10.32323/ujma.1397051
[16] Dragomir, S., On the trapezoid quadrature formula and applications, Kragujev. J. Math., 23, 23, 25-36, 2001 · Zbl 1005.26017
[17] Dragomir, S. S.; Agarwal, R., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11, 5, 91-95, 1998 · Zbl 0938.26012 · doi:10.1016/S0893-9659(98)00086-X
[18] Gorenflo, R.; Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, 1997, Vienna: Springer, Vienna · Zbl 1438.26010
[19] Hezenci, F.; Budak, H., Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals, J. Inequal. Appl., 2023, 2023 · Zbl 1537.26010 · doi:10.1186/s13660-023-03064-3
[20] Hezenci, F.; Budak, H.; Kara, H., New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021, 2021 · Zbl 1494.26043 · doi:10.1186/s13662-021-03615-2
[21] Hezenci, F.; Budak, H.; Kösem, P., A new version of newtons inequalities for Riemann-Liouville fractional integrals, Rocky Mt. J. Math., 53, 1, 49-64, 2023 · Zbl 1519.26011 · doi:10.1216/rmj.2023.53.49
[22] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 2006 · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[23] Kucche, K. D.; Mali, A. D.; Fernandez, A.; Fahad, H. M., On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations, Chaos Solitons Fractals, 163, 2022 · Zbl 1507.26011 · doi:10.1016/j.chaos.2022.112547
[24] Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations (2015). arXiv preprint arXiv:1501.00376
[25] Luo, C.; Du, T., Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34, 3, 751-760, 2020 · Zbl 1499.26148 · doi:10.2298/FIL2003751L
[26] Meerschaert, M. M.; Sabzikar, F.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14, 2015 · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[27] Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D., On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12, 4, 2020 · doi:10.3390/sym12040595
[28] Rahman, G.; Nisar, K. S.; Abdeljawad, T., Tempered fractional integral inequalities for convex functions, Mathematics, 8, 4, 2020 · doi:10.3390/math8040500
[29] Salim, A., Lazreg, J.E., Benchohra, M.: A novel study on tempered \((\varPhi ,\psi )\)-Hilfer fractional operators (2023) · Zbl 1516.34020
[30] Samko, S. G., Fractional Integrals and Derivatives. Theory and Applications, 1993 · Zbl 0818.26003
[31] Sarikaya, M. Z.; Budak, H., Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ., Ser. Math. Inform., 29, 4, 371-384, 2015 · Zbl 1458.26069
[32] Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Başak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57, 9-10, 2403-2407, 2013 · Zbl 1286.26018 · doi:10.1016/j.mcm.2011.12.048
[33] Sarikaya, M. Z.; Tunc, T.; Budak, H., On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput., 276, 316-323, 2016 · Zbl 1410.26045
[34] Sarikaya, M. Z.; Yildirim, H., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17, 2, 1049-1059, 2016 · Zbl 1389.26051 · doi:10.18514/MMN.2017.1197
[35] Siala, I. B.; Budakb, H.; Alic, M. A., Some Milne’s rule type inequalities in quantum calculus, Filomat, 37, 27, 9119-9134, 2023
[36] Srivastava, H. M.; Buschman, R. G., Convolution Integral Equations, with Special Function Kernels, 1977, New York: Wiley, New York · Zbl 0346.45010
[37] Stoer, J.; Bulirsch, R.; Bartels, R.; Gautschi, W.; Witzgall, C., Introduction to Numerical Analysis, 1980, New York: Springer, New York · Zbl 0423.65002 · doi:10.1007/978-1-4757-5592-3
[38] You, X.; Hezenci, F.; Budak, H.; Kara, H., New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Math., 7, 3, 3959-3971, 2022 · doi:10.3934/math.2022218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.