×

Midpoint-type inequalities via twice-differentiable functions on tempered fractional integrals. (English) Zbl 1537.26010


MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
26A51 Convexity of real functions in one variable, generalizations
26D10 Inequalities involving derivatives and differential and integral operators
34A08 Fractional ordinary differential equations

References:

[1] Agarwal, P.; Tariboon, J.; Ntouyas, S. K., Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequal. Appl., 2016 (2016) · Zbl 1336.26006 · doi:10.1186/s13660-016-1067-3
[2] Aljaaidi, T. A.; Pachpatte, D. B.; Abdeljawad, T.; Abdo, M. S.; Almalahi, M. A.; Redhwan, S. S., Generalized proportional fractional integral Hermite-Hadamard’s inequalities, Adv. Differ. Equ., 2021, 1 (2021) · Zbl 1494.26032
[3] Aljaaidi, T. A.; Pachpatte, D. B.; Abdo, M. S.; Botmart, T.; Ahmad, H.; Almalahi, M. A.; Redhwan, S. S., \((K, \Psi ) \)-Proportional fractional integral Polya-Szego-and Gruss-type inequalities, Fractal Fract., 5, 4 (2021) · doi:10.3390/fractalfract5040172
[4] Aljaaidi, T. A.; Pachpatte, D. B.; Shatanawi, W., Generalized proportional fractional integral functional bounds in Minkowski’s inequalities, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.26005 · doi:10.1186/s13662-021-03582-8
[5] Anastassiou, G. A., General fractional Hermite-Hadamard inequalities using m-convexity and \((s,m)\)-convexity, Frontiers in Time Scales and Inequalities, 237-255 (2016) · Zbl 1339.26007
[6] Barani, A., Barani, S., Dragomir, S.S.: Refinements of Hermite-Hadamard inequalities for functions when a power of the absolute value of the second derivative is P-convex. J. Appl. Math., 2012 (2012) · Zbl 1251.26013
[7] Budak, H.; Ertugral, F.; Pehlivan, E., Hermite-Hadamard type inequalities for twice differentiable functions via generalized fractional integrals, Filomat, 33, 15, 4967-4979 (2019) · Zbl 1499.26102 · doi:10.2298/FIL1915967B
[8] Budak, H.; Hezenci, F.; Kara, H., On generalized Ostrowski, Simpson and trapezoidal type inequalities for coordinated convex functions via generalized fractional integrals, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.26024 · doi:10.1186/s13662-021-03463-0
[9] Buschman, R. G., Decomposition of an integral operator by use of Mikusinski calculus, SIAM J. Math. Anal., 3, 83-85 (1972) · Zbl 0233.45019 · doi:10.1137/0503010
[10] Chen, F., A note on the Hermite-Hadamard inequality for convex functions on the coordinates, J. Math. Inequal., 8, 4, 915-923 (2014) · Zbl 1305.26043 · doi:10.7153/jmi-08-69
[11] Dragomir, S. S., On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 4, 775-788 (2001) · Zbl 1002.26017
[12] Dragomir, S. S.; Agarwal, R. P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11, 5, 91-95 (1998) · Zbl 0938.26012 · doi:10.1016/S0893-9659(98)00086-X
[13] Gorenflo, R.; Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, 223-276 (1997), Wien: Springer, Wien · Zbl 1438.26010
[14] Hezenci, F.; Bohner, M.; Budak, H., Fractional midpoint-type inequalities for twice-differentiable functions, Filomat, 37 (2023)
[15] Hezenci, F.; Budak, H.; Kara, H., New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.26043 · doi:10.1186/s13662-021-03615-2
[16] Iqbal, M.; Bhatti, M. I.; Nazeer, K., Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52, 3, 707-716 (2015) · Zbl 1318.26003 · doi:10.4134/BKMS.2015.52.3.707
[17] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[18] Kirmaci, U. S., Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147, 5, 137-146 (2004) · Zbl 1034.26019
[19] Latif, M. A.; Dragomir, S. S., On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012, 1 (2012) · Zbl 1279.26027 · doi:10.1186/1029-242X-2012-28
[20] Li, C.; Deng, W.; Zhao, L., Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst., Ser. B, 24, 1989-2015 (2019) · Zbl 1414.34005
[21] Meerschaert, M. M.; Sabzikar, F.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[22] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus (2012) · Zbl 1247.60003
[23] Miller, S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: Wiley, New York · Zbl 0789.26002
[24] Mohammed, P. O.; Sarikaya, M. Z., On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020) · Zbl 1435.26027 · doi:10.1016/j.cam.2020.112740
[25] Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D., On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12, 4 (2020) · doi:10.3390/sym12040595
[26] Ozdemir, M. E.; Avci, M.; Kavurmaci, H., Hermite-Hadamard-type inequalities via \((\alpha ,m) \)-convexity, Comput. Math. Appl., 61, 9, 2614-2620 (2011) · Zbl 1221.26032 · doi:10.1016/j.camwa.2011.02.053
[27] Ozdemir, M. E.; Yildiz, C.; Akdemir, A. O., On some new Hadamard-type inequalities for co-ordinated quasi-convex functions, Hacet. J. Math. Stat., 41, 5, 697-707 (2012) · Zbl 1276.26031
[28] Park, J., On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci., 9, 62, 3057-3069 (2015)
[29] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), London: Gordon & Breach, London · Zbl 0818.26003
[30] Sarıkaya, M. Z., On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25, 2, 134-147 (2014) · Zbl 1284.26008 · doi:10.1080/10652469.2013.824436
[31] Sarikaya, M. Z.; Aktan, N., On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54, 9-10, 2175-2182 (2011) · Zbl 1235.26015 · doi:10.1016/j.mcm.2011.05.026
[32] Sarikaya, M. Z.; Budak, H., Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ., Ser. Math. Inform., 29, 4, 371-384 (2014) · Zbl 1458.26069
[33] Sarikaya, M. Z.; Saglam, A.; Yildirim, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Probl. Comput. Sci. Math., 5, 3, 2074-2827 (2012)
[34] Sarikaya, M. Z.; Set, E.; Ozdemir, M. E.; Dragomir, S. S., New some Hadamard’s type inequalities for coordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28, 2, 137-152 (2012) · Zbl 1270.26022
[35] Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Basak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57, 9-10, 2403-2407 (2013) · Zbl 1286.26018 · doi:10.1016/j.mcm.2011.12.048
[36] Srivastava, H. M.; Buschman, R. G., Convolution Integral Equations with Special Function Kernels (1977), New York: Wiley, New York · Zbl 0346.45010
[37] Tunç, T.; Sarikaya, M. Z.; Yaldiz, H., Fractional Hermite-Hadamard’s type inequality for co-ordinated convex functions, TWMS J. Pure Appl. Math., 11, 1, 3-29 (2020) · Zbl 1496.26039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.