×

Decorated one-dimensional cobordisms and tensor envelopes of noncommutative recognizable power series. (English) Zbl 1541.18023

In the universal construction approach to low-dimensional topological theories, start with an evaluation of closed \(n\)-dimensional objects \(M\) taking values in a ground commutative ring or a field and then define state spaces \(A(N)\) for \((n - 1)\)-dimensional objects \(N\) via the bilinear pairing on \(n\)-dimensional objects \(M\) with a given boundary, \(\partial M \cong N\), by coupling two such objects \(M_1\) and \(M_2\) along the boundary and evaluating the resulting closed object \(M_1 \cup_N M_2\) by gluing along \(N\). M. Khovanov explores the relation between noncommutative power series and topological theories of one-dimensional cobordisms decorated by labelled zero-dimensional submanifolds. These topological theories give rise to several types of tensor envelopes of noncommutative recognizable power series, including the categories built from the syntactic algebra and syntactic ideals of the series and the analogue of the Deligne category.

MSC:

18M05 Monoidal categories, symmetric monoidal categories
18M30 String diagrams and graphical calculi
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
15A63 Quadratic and bilinear forms, inner products

References:

[1] Atiyah, M. F., Topological quantum field theory, Publ. Math. IHES, 68, 175-186, 1988 · Zbl 0692.53053
[2] Berstel, J.; Reutenauer, C., Zeta functions of formal languages, Trans. Am. Math. Soc., 321, 2, 533-546, 1990 · Zbl 0797.68092
[3] Berstel, J.; Reutenauer, C., Noncommutative Rational Series with Applications, Encyclopedia of Math. Appl., vol. 137, 2011, Cambridge U Press · Zbl 1250.68007
[4] Blanchet, C., An oriented model for Khovanov homology, J. Knot Theory Ramif., 19, 02, 291-312, 2010 · Zbl 1195.57024
[5] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Topological quantum field theories derived from the Kauffman bracket, Topology, 34, 4, 883-927, 1995 · Zbl 0887.57009
[6] Calegari, D.; Freedman, M. H.; Walker, K., Positivity of the universal pairing in 3 dimensions, J. Am. Math. Soc., 23, 1, 107-188, 2010 · Zbl 1201.57024
[7] Chiswell, I., A Course in Formal Languages, Automata and Groups, Universitext Series, 2009, Springer · Zbl 1159.68474
[8] Conway, J. H., Regular Algebra and Finite Machines, 2012, Chapman and Hill, republished by Dover
[9] Comes, J.; Ostrik, V., On blocks of Deligne’s category \(R e p_{\_}( S_t)\), Adv. Math., 226, 1331-1377, 2011 · Zbl 1225.18005
[10] Deligne, P., La catégorie des représentations du groupe symétrique \(S_t\), lorsque t n’est pas en entier naturel, (Proceedings of the Int. Colloquium on Alg. Groups and Homogeneous Spaces. Proceedings of the Int. Colloquium on Alg. Groups and Homogeneous Spaces, Mumbai. Proceedings of the Int. Colloquium on Alg. Groups and Homogeneous Spaces. Proceedings of the Int. Colloquium on Alg. Groups and Homogeneous Spaces, Mumbai, Tata Inst. Fund. Res. Studies Math., 2007), 209-273 · Zbl 1165.20300
[11] Droste, M.; Gastin, P., On recognizable and rational power series in partially commuting variables, (Degano, P.; Gorrieri, R.; Marchetti-Spaccamela, A., Automata, Languages and Programming. Automata, Languages and Programming, ICALP 1997. Automata, Languages and Programming. Automata, Languages and Programming, ICALP 1997, Lect. Notes Comp. Sci., vol. 1256, 1997, Springer)
[12] Ehrig, M.; Stroppel, C.; Tubbenhauer, D., Generic \(\mathfrak{gl}_2\)-foams, webs, and arc algebras
[13] Eilenberg, S., Automata, Languages and Machines, vol. A, 1974, Academic Press · Zbl 0317.94045
[14] Eilenberg, S., Automata, Languages and Machines, vol. B, 1976, Academic Press · Zbl 0359.94067
[15] Ésik, Z.; Kuich, W., Modern automata theory
[16] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Math. Surveys and Monographs, vol. 205, 2015, AMS · Zbl 1365.18001
[17] Fliess, M., Matrices de Hankel, J. Math. Pures Appl., 53, 9, 197-222, 1974 · Zbl 0315.94051
[18] Foursov, M. V.; Hespel, C., About the decomposition of rational series in noncommutative variables into simple series, (Proc. 6th Int. Conf. on Informatics in Control, Automation and Robotics - Signal Processing, Systems Modeling and Control, 2009), 214-220
[19] Freedman, M. H.; Kitaev, A.; Nayak, C.; Slingerland, J. K.; Walker, K.; Wang, Z., Universal manifold pairings and positivity, Geom. Topol., 9, 2303-2317, 2005 · Zbl 1129.57035
[20] Halverson, T.; delMas, E., Representations of the rook-Brauer algebra, Commun. Algebra, 42, 1, 423-443, 2014 · Zbl 1291.05215
[21] Helton, J. W.; Mai, T.; Speicher, R., Applications of realizations (aka linearizations) to free probability, J. Funct. Anal., 274, 1-79, 2018 · Zbl 1376.81026
[22] Kassel, C.; Reutenauer, C., Algebraicity of the zeta function associated to a matrix over a free group algebra, Algebra Number Theory, 8, 2, 497-511, 2014 · Zbl 1302.14006
[23] Khovanov, M., sl(3) link homology, Algebraic Geom. Topol., 4, 1045-1081, 2004 · Zbl 1159.57300
[24] Khovanov, M., Universal construction of topological theories in two dimensions
[25] Khovanov, M.; Kitchloo, N., A deformation of Robert-Wagner foam evaluation and link homology, (Geometric and Algebraic Aspects of Quantum Groups and Related Topics. Geometric and Algebraic Aspects of Quantum Groups and Related Topics, Contemporary Mathematics, vol. 791, 2024), 147-204 · Zbl 1536.57017
[26] Khovanov, M.; Laugwitz, R., Planar diagrammatics of self-adjoint functors and recognizable tree series, Pure Appl. Math. Q., 19, 5, 2409-2499, 2023 · Zbl 07801206
[27] Khovanov, M.; Kononov, Y.; Ostrik, V., Two-dimensional topological theories, rational functions and their tensor envelopes, Sel. Math. New Ser., 28, Article 71 pp., 2022 · Zbl 1496.18018
[28] Khovanov, M.; Qi, Y.; Rozansky, L., Evaluating thin flat surfaces, Commun. Math. Phys., 385, 1835-1870, 2021 · Zbl 1490.57039
[29] Khovanov, M.; Sazdanovic, R., Categorification of the polynomial ring, Fundam. Math., 230, 3, 251-280, 2015 · Zbl 1335.16016
[30] Khovanov, M.; Sazdanovic, R., Diagrammatic categorification of the Chebyshev polynomials of the second kind, J. Pure Appl. Algebra, 225, 6, Article 106592 pp., 2021 · Zbl 1480.16037
[31] Khovanov, M.; Sazdanovic, R., Bilinear pairings on two-dimensional cobordisms and generalizations of the Deligne category, Fundam. Math., 264, 1-20, 2024 · Zbl 1539.18016
[32] Khovanov, M.; Tian, Y., How to categorify the ring of integers localized at two, Quantum Topol., 10, 4, 723-775, 2019 · Zbl 1454.16005
[33] Knop, F., Tensor envelopes of regular categories, Adv. Math., 214, 571-617, 2007 · Zbl 1127.18004
[34] Kuich, W.; Salomaa, A., Semiring, Automata, Languages, EATCS Monographs of Theor. Comp. Sci., vol. 5, 1986, Springer · Zbl 0582.68002
[35] Martin, P.; Mazorchuk, V., On the representation theory of partial Brauer algebras, Q. J. Math., 65, 1, 225-247, 2014 · Zbl 1354.16016
[36] Perrin, D., Completely reducible sets, Int. J. Algebra Comput., 23, 4, 915-942, 2013 · Zbl 1308.68072
[37] Reynolds, A., Representations of the oriented Brauer category, 2015, University of Oregon, PhD Thesis
[38] Reutenauer, C., Séries formelles et algébres syntactiques, J. Algebra, 66, 448-483, 1980 · Zbl 0444.68075
[39] Reutenauer, C., Cyclic derivation of noncommutative algebraic power series, J. Algebra, 85, 32-39, 1983 · Zbl 0523.16025
[40] Reutenauer, C., Noncommuting variables: I. Finite automata, II. Rational generating series, III. Realization of bilinear systems, (Singh, M., Encyclopedia of Systems and Control, 1988, Pergamon Press), 3268-3279
[41] Reutenauer, C., A survey of noncommutative rational series, DIMACS Ser. Discret. Math. Theor. Comput. Sci., 24, 159-169, 1996 · Zbl 0842.34001
[42] Reutenauer, C., Michel Fliess and non-commutative formal power series, Int. J. Control, 81, 3, 338-343, 2008
[43] Rota, G.-C., A cyclic derivative in noncommutative algebra, J. Algebra, 64, 54-75, 1980 · Zbl 0428.16036
[44] Robert, L.-H.; Wagner, E., A closed formula for the evaluation of \(\mathfrak{sl}_N\)-foams, Quantum Topol., 11, 3, 411-487, 2024 · Zbl 1476.57054
[45] Robert, L.-H.; Wagner, E., Symmetric Khovanov-Rozansky link homologies, J. Éc. Polytech. Math., 7, 573-651, 2020 · Zbl 1458.57013
[46] Rose, D. E.V.; Wedrich, P., Deformations of colored sl(N) link homologies via foams, Geom. Topol., 20, 3431-3517, 2016 · Zbl 1420.57044
[47] Salomaa, A.; Soittola, M., Automata-Theoretic Aspects of Formal Power Series, Texts and Monographs in Computer Science, 1978, Springer · Zbl 0377.68039
[48] Sam, S.; Snowden, A., Gröbner methods for representations of combinatorial categories, J. Am. Math. Soc., 30, 159-203, 2017 · Zbl 1347.05010
[49] Sakarovitch, J., Easy multiplications I. The realm of Kleene’s theorem, Inf. Comput., 74, 173-197, 1987 · Zbl 0642.20043
[50] Sakarovitch, J., Rational and recognizable power series, (Droste, M.; Kuich, W.; Vogler, H., Handbook of Weighted Automata, 2009, Springer), 105-174, Chapter 4 · Zbl 1484.68110
[51] Schützenberger, M. P., On the definition of a family of automata, Inf. Control, 4, 245-270, 1961 · Zbl 0104.00702
[52] Underwood, R. G., Fundamentals of Hopf Algebras, Universitext Series, 2015, Springer · Zbl 1341.16034
[53] Walker, K., Universal manifold pairings in dimension 3, 2012, Celebratio Mathematica, Michael H. Freedman
[54] Wedrich, P., Exponential growth of colored HOMFLY-PT homology, Adv. Math., 353, 471-525, 2019 · Zbl 1467.57010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.