×

Ring-theoretic properties of locally Mori domains and rings of the form \(\text{Int}(E, D)\). (English) Zbl 1541.18004

Summary: An integral domain \(D\) is said to be locally Mori if any localization of \(D\) at a maximal ideal is a Mori domain. In this paper we are concerned with some ring-theoretic properties of locally Mori domains and their rings of integer-valued polynomials. First, we present some results on the transfer of the locally Mori property to flat overrings, Nagata ideal transforms, polynomial ring extensions and pullback constructions. Then, we investigate rings of integer-valued polynomials over (locally) Mori domains, and for an integral domain \(D\), we give a necessary condition for \(\text{Int}(D)\) to be an MZ-Mori domain.

MSC:

18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
13B30 Rings of fractions and localization for commutative rings
13C11 Injective and flat modules and ideals in commutative rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
Full Text: DOI

References:

[1] Anderson, DF; Bouvier, A., Ideal transforms, and overrings of a quasilocal integral domain, Ann. Univ. Ferrara, 32, 15-38 (1986) · Zbl 0655.13002 · doi:10.1007/BF02825232
[2] Anderson, DF; Bouvier, A.; Dobbs, DE; Fontana, M.; Kabbaj, S., On Jaffard domains, Expo. Math., 6, 145-175 (1988) · Zbl 0657.13011
[3] Barucci, V.: Mori domains. In: Chapman, S., Galz, S. (eds.) Non-Noetherian Commutative Ring Theory, Mathematics and Its Applications, vol. 520, pp. 57-73. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 1079.13509
[4] Barucci, V.; Gabelli, S., How far is a Mori domain from being a Krull domain?, J. Pure Appl. Algebra, 45, 101-112 (1987) · Zbl 0623.13008 · doi:10.1016/0022-4049(87)90063-6
[5] Brewer, J., The ideal transform and overrings of an integral domain, Math. Z., 407, 301-306 (1968) · Zbl 0167.03601 · doi:10.1007/BF01110018
[6] Brewer, J.; Heinzer, W., Associated primes of principal ideals, Duke Math. J., 41, 1-7 (1974) · Zbl 0284.13001 · doi:10.1215/S0012-7094-74-04101-5
[7] Cahen, P-J; Chabert, J-L, Coefficients et valeurs d’un polynôme, Bull. Sci. Math. Série, 2, 95, 295-304 (1971) · Zbl 0221.13006
[8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials, Mathematical Surveys and Monographs, vol. 48. American Mathematical Society, Providence (1997) · Zbl 0884.13010
[9] Cahen, P-J; Gabelli, S.; Houston, EG, Mori domains of integer-valued polynomials, J. Pure Appl. Algebra, 153, 1-15 (2000) · Zbl 0978.13010 · doi:10.1016/S0022-4049(99)00073-0
[10] Cahen, P-J; Loper, AK; Tartarone, F., Integer-valued polynomials and Prüfer \(v\)-multiplication domains, J. Algebra, 226, 2, 765-787 (2000) · Zbl 0961.13012 · doi:10.1006/jabr.1999.8155
[11] Elliott, J.: Some new approaches to integer-valued polynomial rings. In: Fontana, Kabbaj, Olberding, Swanson (eds.) Commutative Algebra and Its Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, pp. 223-237. de Gruyter, New York (2009) · Zbl 1177.13053
[12] Fontana, M.; Gabelli, S., On the class group and the local class group of a pullback, J. Algebra, 181, 3, 803-835 (1996) · Zbl 0871.13006 · doi:10.1006/jabr.1996.0147
[13] Gabelli, S.; Houston, EG, Coherentlike conditions in pullbacks, Mich. Math. J., 44, 99-123 (1997) · Zbl 0896.13007 · doi:10.1307/mmj/1029005623
[14] Gabelli, S., Houston, E.G.: Ideal theory in pullbacks. In: Non-Noetherian Commutative Ring Theory, Mathematics and Its Applications, vol. 520, pp. 199-227. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 1094.13501
[15] Heinzer, W., Some properties of integral closure, Proc. Am. Math. Soc., 18, 749-753 (1967) · Zbl 0148.26604 · doi:10.1090/S0002-9939-1967-0214580-3
[16] Izelgue, L.; Tamoussit, A., On the flatness of \(\rm Int(D)\) as a \(D[X]\)-module, Gulf J. Math., 4, 4, 39-47 (2016) · Zbl 1357.13025
[17] Jaffard, P., Les systèmes d’idéaux (1960), Paris: Dunod, Paris · Zbl 0101.27502
[18] Kim, H.; Tamoussit, A., Integral domains issued from associated primes, Commun. Algebra, 50, 2, 538-555 (2022) · Zbl 1491.13026 · doi:10.1080/00927872.2021.1960991
[19] Mulay, S.B.: On integer-valued polynomials. In: Zero-Dimensional Commutative Rings, Lecture Notes in Pure and Applied Mathematics, vol. 171, pp. 331-345. Dekker, New York (1995) · Zbl 0885.13013
[20] Ouzzaouit, O.; Tamoussit, A., On the transfer of some \(t\)-locally properties, Hacettepe J. Math. Stat., 50, 3, 825-832 (2021) · Zbl 1480.13003 · doi:10.15672/hujms.766283
[21] Querré, J., Sur une propriété des anneaux de Krull, Bull. Sci. Math., 95, 341-354 (1971) · Zbl 0219.13015
[22] Querré, J., Intersections d’anneaux intègres, J. Algebra, 43, 55-60 (1976) · Zbl 0353.13012 · doi:10.1016/0021-8693(76)90144-7
[23] Richman, F., Generalized quotient rings, Proc. Am. Math. Soc., 16, 794-799 (1965) · Zbl 0145.27406 · doi:10.1090/S0002-9939-1965-0181653-1
[24] Tamoussit, A.: On the ring of \(D\)-valued \(R\)-polynomials over \(E\). J. Algebra Appl. (2021). doi:10.1142/S0219498822500876 · Zbl 1484.13048
[25] Tamoussit, A., Tartarone, F.: Essential properties for rings of integer-valued polynomials. Submitted · Zbl 1522.13005
[26] Wang, FG; Kim, H., Foundations of Commutative Rings and Their Modules. Algebra and Applications, no. 22 (2016), Singapore: Springer, Singapore · Zbl 1367.13001
[27] Wang, FG; McCasland, RL, On strong Mori domains, J. Pure Appl. Algebra, 135, 155-165 (1999) · Zbl 0943.13017 · doi:10.1016/S0022-4049(97)00150-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.