×

Non-abelian gauge-invariant cellular automata. (English) Zbl 1540.68140

Martín-Vide, Carlos (ed.) et al., Theory and practice of natural computing. 8th international conference, TPNC 2019, Kingston, ON, Canada, December 9–11, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11934, 211-221 (2019).
Summary: Gauge-invariance is a mathematical concept that has profound implications in Physics – as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this paper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations.
For the entire collection see [Zbl 1428.68038].

MSC:

68Q80 Cellular automata (computational aspects)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)
[2] Arrighi, P., Bény, C., Farrelly, T.: A quantum cellular automaton for one-dimensional QED. arXiv preprint arXiv:1903.07007 (2019)
[3] Arrighi, P., Di Molfetta, G., Eon, N.: A gauge-invariant reversible cellular automaton. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS, vol. 10875, pp. 1-12. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92675-9_1 · Zbl 1511.37020
[4] Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2-30 (2003) · Zbl 1012.81006
[5] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008) · Zbl 1205.81062
[6] Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, Princeton (2013) · Zbl 1278.81012
[7] Salo, V., Törmä, I.: Color blind cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 139-154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40867-0_10 · Zbl 1336.68172
[8] Toffoli, T., Margolus, N.: Cellular Automata Machine - A new Environment for Modelling. MIT Press, Cambridge (1987)
[9] Toom, A.: Cellular automata with errors: problems for students of probability. In: Topics in Contemporary Probability and Its Applications, pp. 117-157 (1995) · Zbl 0864.60078
[10] Toom, A., Vasilyev, N., Stavskaya, O., Mityushin, L., Kurdyumov, G., Pirogov, S.: Discrete local Markov systems. Stochastic cellular systems: ergodicity, memory, morphogenesis. In: Dobrushin, R., Kryukov, V., Toom, A. (eds.) Nonlinear Science: Theory and Applications (1990)
[11] Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Heidelberg (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.