×

A gauge invariant reversible cellular automaton. (English) Zbl 1511.37020

Baetens, Jan M. (ed.) et al., Cellular automata and discrete complex systems. 24th IFIP WG 1.5 international workshop, AUTOMATA 2018, Ghent, Belgium, June 20–22, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10875, 1-12 (2018).
Summary: Gauge invariance is a fundamental concept in physics – known to provide mathematical justifications for the fundamental forces. In this paper, we provide discrete counterparts to the main gauge theoretical concepts, directly in terms of cellular automata. More precisely, we describe a step-by-step gauging procedure to enforce local symmetries upon a given cellular automaton. We apply it to a simple reversible cellular automaton for concreteness. From a computer science perspective, discretized gauge theories may be of use in numerical analysis, quantum simulation, fault-tolerant (quantum) computation. From a mathematical perspective, discreteness provides a simple yet rigorous route straight to the core concepts.
For the entire collection see [Zbl 1390.68014].

MSC:

37B15 Dynamical aspects of cellular automata
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

References:

[1] Quigg, C., Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (2013), Princeton: Princeton University Press, Princeton · Zbl 1278.81012 · doi:10.1515/9781400848225
[2] Georgescu, I.; Ashhab, S.; Nori, F., Quantum simulation, Rev. Mod. Phys., 86, 1, 153 (2014) · doi:10.1103/RevModPhys.86.153
[3] Hastings, WK, Monte carlo sampling methods using markov chains and their applications, Biometrika, 57, 1, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[4] Harao, M.; Noguchi, S., Fault tolerant cellular automata, J. Comput. Syst. Sci., 11, 2, 171-185 (1975) · Zbl 0319.94030 · doi:10.1016/S0022-0000(75)80066-3
[5] Toom, A.: Cellular automata with errors: problems for students of probability. In: Topics in Contemporary Probability and Its Applications, pp. 117-157 (1995) · Zbl 0864.60078
[6] Kitaev, AY, Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 1, 2-30 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[7] Nayak, C.; Simon, SH; Stern, A.; Freedman, M.; Sarma, SD, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys., 80, 3, 1083 (2008) · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[8] Toffoli, T.; Margolus, N., Cellular Automata Machine - A New Environment for Modelling (1987), Cambridge: MIT Press, Cambridge · Zbl 0655.68055
[9] Wolf-Gladrow, DA, Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (2000), Heidelberg: Springer, Heidelberg · Zbl 0999.82054 · doi:10.1007/b72010
[10] Arrighi, P.; Facchini, S.; Forets, M., Discrete lorentz covariance for quantum walks and quantum cellular automata, New J. Phys., 16, 9, 093007 (2014) · Zbl 1451.37016 · doi:10.1088/1367-2630/16/9/093007
[11] Formenti, E.; Kari, J.; Taati, S., On the hierarchy of conservation laws in a cellular automaton, Nat. Comput., 10, 4, 1275-1294 (2011) · Zbl 1251.68148 · doi:10.1007/s11047-010-9222-0
[12] Salo, V.; Törmä, I.; Kari, J.; Kutrib, M.; Malcher, A., Color blind cellular automata, Cellular Automata and Discrete Complex Systems, 139-154 (2013), Heidelberg: Springer, Heidelberg · Zbl 1336.68172 · doi:10.1007/978-3-642-40867-0_10
[13] Di Molfetta, G.; Brachet, M.; Debbasch, F., Quantum walks in artificial electric and gravitational fields, Phys. A Stat. Mech. Appl., 397, 157-168 (2014) · Zbl 1395.82213 · doi:10.1016/j.physa.2013.11.036
[14] Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F., Quantum walks and non-abelian discrete gauge theory, Phys. Rev. A, 94, 1, 012335 (2016) · doi:10.1103/PhysRevA.94.012335
[15] Di Molfetta, G.; Pérez, A., Quantum walks as simulators of neutrino oscillations in a vacuum and matter, New J. Phys., 18, 10, 103038 (2016) · doi:10.1088/1367-2630/18/10/103038
[16] Willson, SJ, Computing fractal dimensions for additive cellular automata, Phys. D, 24, 190-206 (1987) · Zbl 0634.68047 · doi:10.1016/0167-2789(87)90074-1
[17] Chandrasekharan, S.; Wiese, UJ, Quantum link models: a discrete approach to gauge theories, Nucl. Phys. B, 492, 1-2, 455-471 (1997) · Zbl 0937.81050 · doi:10.1016/S0550-3213(97)80041-7
[18] Rico, E.; Pichler, T.; Dalmonte, M.; Zoller, P.; Montangero, S., Tensor networks for lattice gauge theories and atomic quantum simulation, Phys. Rev. Lett., 112, 20, 201601 (2014) · doi:10.1103/PhysRevLett.112.201601
[19] Silvi, P.; Rico, E.; Calarco, T.; Montangero, S., Lattice gauge tensor networks, New J. Phys., 16, 10, 103015 (2014) · doi:10.1088/1367-2630/16/10/103015
[20] Wegner, FJ, Duality in generalized ising models and phase transitions without local order parameters, J. Math. Phys., 12, 10, 22592272 (1971) · doi:10.1063/1.1665530
[21] Kornyak, VV; Gerdt, VP; Mayr, EW; Vorozhtsov, EV, Discrete dynamics: gauge invariance and quantization, Computer Algebra in Scientific Computing, 180-194 (2009), Heidelberg: Springer, Heidelberg · Zbl 1260.81109 · doi:10.1007/978-3-642-04103-7_17
[22] Arrighi, P.; Nesme, V.; Werner, R.; Martín-Vide, C.; Otto, F.; Fernau, H., One-dimensional quantum cellular automata over finite, unbounded configurations, Language and Automata Theory and Applications, 64-75 (2008), Heidelberg: Springer, Heidelberg · Zbl 1156.68485 · doi:10.1007/978-3-540-88282-4_8
[23] Itzykson, C., Zuber, J.B.: Quantum Field Theory. Courier Corporation (2006)
[24] Strocchi, F., An Introduction to Non-Perturbative Foundations of Quantum Field Theory (2013), Oxford: Oxford University Press, Oxford · Zbl 1266.81002 · doi:10.1093/acprof:oso/9780199671571.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.