×

An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability. (English) Zbl 1540.65283

Summary: This article proposes a numerical method to find the numerical solutions of the time-fractional diffusion equations involving fractional distributed order operator of Caputo type. Using the finite difference approach, we solve these equations by applying the semi-discrete method regarding the time variable and the fully-discrete method regarding the spatial variable. For the distributed integral part with respect to time, the Gauss-Legendre quadrature formula is applied and to estimate the multi-term time-fractional operator, including the Caputo fractional derivative, the L2-1 approach is utilized. In addition, the error analysis and stability of the proposed numerical method are studied in this work. Finally, some numerical examples are provided to demonstrate the accuracy and efficiency of the suggested method. These examples are compared to several numerical previous methods stated in the articles, and the results show that the accuracy of our method is superior to these methods.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abdel-Gawad, H. I.; Aldailami, A. A.; Saad, K. M.; Gómez-Aguilar, J. F., Numerical solution of q-dynamic equations, Numer. Methods Partial Differential Equations, 38, 5, 1162-1179 (2022) · Zbl 1533.92161
[2] Al-Refai, M.; Luchko, Y., Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications, Analysis, 36, 2, 123-133 (2016) · Zbl 1381.35208
[3] Ansari, A.; Derakhshan, M. H., On spectral polar fractional Laplacian, Math. Comput. Simulation, 206, 636-663 (2023) · Zbl 1540.65271
[4] Ansari, A.; Derakhshan, M. H.; Askari, H., Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration, Commun. Nonlinear Sci. Numer. Simul., 113, Article 106590 pp. (2022) · Zbl 1500.35290
[5] Bagley, R. L.; Torvik, P. J., On the existence of the order domain and the solution of distributed order equations-Part II, Int. J. Appl. Mech., 8, 965-987 (2000) · Zbl 1142.34301
[6] Baleanu, D.; Magin, R. L.; Bhalekar, S.; Daftardar-Gejji, V., Chaos in the fractional order nonlinear Bloch equation with delay, Commun. Nonlinear Sci. Numer. Simul., 25, 41-49 (2015) · Zbl 1440.78002
[7] Bhrawy, A.; Zaky, M., Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations, Nonlinear Dynam., 89, 2, 1415-1432 (2017) · Zbl 1448.65180
[8] Bu, W.; Xiao, A.; Zeng, W., Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72, 3, 422-441 (2017) · Zbl 1375.65110
[9] Caponetto, R.; Dongola, Giovanni.; Fortuna, Luigi.; Petráš, Ivo., Modeling and Control Applications (2010), World Scientific
[10] Caputo, M., Mean fractional order derivatives differential equations and filters, Ann. dell’Universita Ferrara, 41, 1, 73-84 (1995) · Zbl 0882.34007
[11] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66, Article 046129 pp. (2002)
[12] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M.; Gonchar, V. Y., Distributed order time fractional diffusion equation, Fract. Calc. Appl. Anal., 6, 3, 259-280 (2003) · Zbl 1089.60046
[13] Dehghan, M.; Abbaszadeh, M., A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation, Math. Methods Appl. Sci., 41, 3476-3494 (2018) · Zbl 1395.65098
[14] Diethelm, K.; Ford, N. J., Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225, 96-104 (2009) · Zbl 1159.65103
[15] Fan, W.; Liu, F., A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett., 77, 114-121 (2018) · Zbl 1380.65260
[16] Gao, G.; Alikhanov, A. A.; Sun, Z., The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 73, 93-121 (2017) · Zbl 1381.65064
[17] González-Calderón, A.; Vivas-Cruz, L. X.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F., Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simulation, 206, 375-390 (2023) · Zbl 1540.65536
[18] Gorenflo, R.; Luchko, Y.; Stojanović, M., Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density, Fract. Calc. Appl. Anal., 16, 2, 297-316 (2013) · Zbl 1312.35179
[19] Hu, X.; Liu, F.; Turner, I.; Anh, V., An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation, Numer. Algorithms, 72, 2, 393-407 (2016) · Zbl 1343.65110
[20] Kharazmi, E.; Zayernouri, M., Fractional pseudo-spectral methods for distributed-order fractional PDEs, Int. J. Comput. Math., 95, 95, 1340-1361 (2018) · Zbl 1513.65251
[21] Kochubei, A. N., Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340, 1, 252-281 (2007) · Zbl 1149.26014
[22] Koksal, M. E., Stability analysis of fractional differential equations with unknown parameters, Nonlinear Anal. Model. Control, 24, 2, 224-240 (2019) · Zbl 1418.93202
[23] Koksal, M. E., Time and frequency responses of non-integer order RLC circuits, AIMS Math., 4, 1, 61-75 (2019)
[24] Kumar, S.; Gómez-Aguilar, J. F., Numerical solution of Caputo-Fabrizio time fractional distributed order reaction-diffusion equation via quasi wavelet based numerical method, J. Appl. Comput. Mech., 6, 4, 848-861 (2020)
[25] Li, J.; Liu, F.; Feng, L.; Turner, I., A novel finite volume method for the Riesz space distributed-order diffusion equation, Comput. Math. Appl., 74, 772-783 (2017) · Zbl 1384.65059
[26] Li, Y.; Liu, F.; Turner, I. W.; Li, T., Time-fractional diffusion equation for signal smoothing, Appl. Math. Comput., 326, 108-116 (2018) · Zbl 1426.94055
[27] Li, Z.; Luchko, Y.; Yamamoto, M., Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73, 1041-1052 (2016) · Zbl 1409.35221
[28] Luchko, Y., Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12, 409-422 (2009) · Zbl 1198.26012
[29] Mainardi, F.; Pagnini, G., The role of the Fox-Wright functions in fractional sub-diffusion of distributed order, J. Comput. Appl. Math., 207, 2, 245-257 (2007) · Zbl 1120.35002
[30] Majeed, A.; Kamran, M.; Asghar, N.; Baleanu, D., Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo derivative, Eng. Comput., 38, 2, 885-900 (2022)
[31] Mashayekhi, S.; Razzaghi, M., Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 315, 169-181 (2016) · Zbl 1349.65253
[32] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[33] Mohammed, A. A.; Derakhshan, M. H.; Marasi, H. R.; Kumar, P., An efficient numerical method for the time-fractional distributedorder nonlinear Klein-Gordon equation with shifted fractional Gegenbauer multi-wavelets method, Phys. Scr. (2023)
[34] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[35] Pourbabaee, M.; Saadatmandi, A., A novel Legendre operational matrix for distributed order fractional differential equations, Appl. Math. Comput., 361, 215-231 (2019) · Zbl 1428.34021
[36] Rahimkhani, P.; Ordokhani, Y.; Lima, P. M., An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets, Appl. Numer. Math., 145, 1-27 (2019) · Zbl 1433.74116
[37] Ren, J.; Chen, H., A numerical method for distributed order time fractional diffusion equation with weakly singular solutions, Appl. Math. Lett., 96, 159-165 (2019) · Zbl 1426.65131
[38] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives:Theory and Applications (1993), Gordonand Breach: Gordonand Breach Amsterdam · Zbl 0818.26003
[39] Vieira, N.; Rodrigues, M. M.; Ferreira, M., Time-fractional telegraph equation of distributed order in higher dimensions, Commun. Nonlinear Sci. Numer. Simul., 102, Article 105925 pp. (2021) · Zbl 1471.35313
[40] Ye, H.; Liu, F.; Anh, V., Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys., 298, 652-660 (2015) · Zbl 1349.65353
[41] Ye, H.; Liu, F.; Anh, V.; Turner, I., Numerical analysis for the time distributed order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 80, 3, 531-540 (2015)
[42] Yu, Q.; Turner, I.; Liu, F.; Moroney, T., A study of distributed-order time fractional diffusion models with continuous distribution weight functions, Numer. Methods Partial Differential Equations (2022)
[43] Yuttanan, B.; Razzaghi, M.; Vo, T. N., A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations, Appl. Numer. Math., 160, 349-367 (2021) · Zbl 1461.65250
[44] Zaky, M. A.; Machado, J. T., Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations, Comput. Math. Appl., 79, 2, 476-488 (2020) · Zbl 1443.65257
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.