×

An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation. (English) Zbl 1343.65110

The authors discuss an implicit numerical method of a new time distributed-order and two-sided space fractional advection-dispersion equation. Based on the observations from several papers in the literature, the authors focus on deriving a numerical method for a new time distributed-order and two-sided space fractional advection-dispersion equation (TDO-TSSFADE). An implicit numerical method is proposed for the TDO-TSSFADE. The uniqueness, stability and convergence of the implicit numerical method are discussed. Some numerical results are presented to illustrate the effectiveness of the method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35L20 Initial-boundary value problems for second-order hyperbolic equations

Software:

ma2dfc

References:

[1] Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water. Resour. Res. 28(12), 3293-3307 (1992) · doi:10.1029/92WR01757
[2] Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation, II. Application of Laplace and Fourier transforms. Proc. R. Soc., A 465, 1893-1917 (2009) · Zbl 1186.35107 · doi:10.1098/rspa.2008.0446
[3] Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order nonlinear reaction-diffusion equations. J. Comput. Appl. Math. 275, 216-227 (2015) · Zbl 1298.35242 · doi:10.1016/j.cam.2014.07.029
[4] Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the distributed order time-fractional diffusion equation, IEEE Explore Conference Proceedings, ICFDA’14 International Conference on Fractional Differentiation and Its Applications, Catania, Italy (2014) · Zbl 1086.65087
[5] Rebelo, M., Morgado, M.L.: Numerical solution of the reaction-wave-diffusion equation with distributed order in time, Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Cadiz, Spain, July, 3-7 , (2014) Vol IV 1057-1068. ISBN: 978-84-616-9216-3 · Zbl 1126.76346
[6] Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96-104 (2009) · Zbl 1159.65103 · doi:10.1016/j.cam.2008.07.018
[7] Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.U.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, 743-773 (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[8] Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193-209 (2006) · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[9] Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117-1127 (2012) · Zbl 1234.35300 · doi:10.1016/j.jmaa.2011.12.055
[10] Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297-316 (2013) · Zbl 1312.35179 · doi:10.2478/s13540-013-0019-6
[11] Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.: Fundamental solutions for the multi-term modified power law wave equations in a finite domain, Electronic. J. Math. Anal. Appl. 1(1), 55-66 (2013) · Zbl 1432.35005
[12] Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012) · Zbl 1401.93005
[13] Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11-22 (2014) · Zbl 1349.65212 · doi:10.1016/j.jcp.2013.11.013
[14] Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comp. Appl. Math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[15] Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 91, 12-20 (2007) · Zbl 1193.76093
[16] Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990-3007 (2012) · Zbl 1268.65124 · doi:10.1016/j.camwa.2012.01.020
[17] Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time fractional wave equations. Fractional Calc. Appl. Anal. 16(1), 9-25 (2013) · Zbl 1312.65138
[18] Lorenz, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57-98 (2002) · Zbl 1018.93007 · doi:10.1023/A:1016586905654
[19] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[20] Meerschaert, M.M., Naneb, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216-228 (2011) · Zbl 1222.35204 · doi:10.1016/j.jmaa.2010.12.056
[21] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[22] Podlubny, I.: Fractional differential equaitions. Acdemic Press, New York (1999) · Zbl 0924.34008
[23] Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 371, 20120153 (2013) · Zbl 1339.65094 · doi:10.1098/rsta.2012.0153
[24] Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323-1341 (2004)
[25] Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193-209 (2006) · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[26] Ye, H., Liu, F., Turner, I., Anh, V., Burrage, K.: Series expansion solutions for the multi-term time and space fractional partial differential equations in two and three dimensions. Eur. Phys. J., Spec. Top. 222, 1901-1914 (2013) · Zbl 1373.94373 · doi:10.1140/epjst/e2013-01972-2
[27] Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Res. 32, 561-581 (2009) · doi:10.1016/j.advwatres.2009.01.008
[28] Zhao, X., Sun, Z.-Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061-6074 (2011) · Zbl 1227.65075 · doi:10.1016/j.jcp.2011.04.013
[29] Zhang, X.X., Mouchao L.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water. Resour. Res. 43, W07437 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.