×

Variational data assimilation and its decoupled iterative numerical algorithms for Stokes-Darcy model. (English) Zbl 1540.35422

Summary: In this paper we develop and analyze a variational data assimilation method with efficient decoupled iterative numerical algorithms for the Stokes-Darcy equations with the Beavers-Joseph interface condition. By using Tikhonov regularization and formulating the variational data assimilation into an optimization problem, we establish the existence, uniqueness, and stability of the optimal solution. Based on the weak formulation of the Stokes-Darcy equations, the Lagrange multiplier rule is utilized to derive the first order optimality system for both the continuous and discrete variational data assimilation problems, where the discrete data assimilation is based on a finite element discretization in space and the backward Euler scheme in time. By rescaling the optimality system and then analyzing its corresponding bilinear forms, we prove the optimal finite element convergence rate with special attention paid to recovering uncertainties missed in the optimality system. To solve the discrete optimality system efficiently, three decoupled iterative algorithms are proposed to address the computational cost for both well-conditioned and ill-conditioned variational data assimilation problems, respectively. Finally, numerical results are provided to validate the proposed methods.

MSC:

35Q93 PDEs in connection with control and optimization
35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65F22 Ill-posedness and regularization problems in numerical linear algebra
65F10 Iterative numerical methods for linear systems
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
49M41 PDE constrained optimization (numerical aspects)
93C20 Control/observation systems governed by partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Software:

EnKF
Full Text: DOI

References:

[1] Abarbanel, H. D. I., Rozdeba, P. J., and Shirman, S., Machine learning: Deepest learning as statistical data assimilation problems, Neural Comput., 30 (2018), pp. 2025-2055, doi:10.1162/neco_a_01094. · Zbl 1472.68127
[2] Agoshkov, V. I., Parmuzin, E. I., and Shutyaev, V. P., A numerical algorithm of variational data assimilation for reconstruction of salinity fluxes on the ocean surface, Russian J. Numer. Anal. Math. Model., 23 (2008), pp. 135-161. · Zbl 1217.86003
[3] Apte, A., Jones, C. K. R. T., Stuart, A. M. and Voss, J., Data assimilation: Mathematical and statistical perspectives, Internat. J. Numer. Methods Fluids, 56 (2008), pp. 1033-1046. · Zbl 1384.62300
[4] Arbogast, T. and Brunson, D. S., A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci., 11 (2007), pp. 207-218. · Zbl 1186.76660
[5] Arbogast, T., Hesse, M. A., and Taicher, A. L., Mixed methods for two-phase Darcy-Stokes mixtures of partially melted materials with regions of zero porosity, SIAM J. Sci. Comput., 39 (2017), pp. B375-B402. · Zbl 1383.76330
[6] Armentano, M. G. and Stockdale, M. L., Approximations by mini mixed finite element for the Stokes-Darcy coupled problem on curved domains, Int. J. Numer. Anal. Model., 18 (2021), pp. 203-234. · Zbl 1471.74067
[7] Auroux, D. and Nodet, M., The back and forth nudging algorithm for data assimilation problems: Theoretical results on transport equations, ESAIM Control Optim. Calc. Var., 18 (2012), pp. 318-342, doi:10.1051/cocv/2011004. · Zbl 1252.65159
[8] Azouani, A., Olson, E., and Titi, E. S., Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), pp. 277-304, doi:10.1007/s00332-013-9189-y. · Zbl 1291.35168
[9] Badea, L., Discacciati, M., and Quarteroni, A., Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math., 115 (2010), pp. 195-227. · Zbl 1423.35304
[10] Beavers, G. and Joseph, D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), pp. 197-207.
[11] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., and Wojtaszczyk, P., Data assimilation in reduced modeling, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1-29, doi:10.1137/15M1025384. · Zbl 06736493
[12] Blum, J., Dime, F.-X. L., and Navon, I. M., Data assimilation for geophysical fluids, in Handbook of Numerical Analysis. Special Volume: Computational Methods for the Atmosphere and the Oceans, , Elsevier/North-Holland, Amsterdam, 2009, pp. 385-441. · Zbl 1226.86002
[13] Boubendir, Y. and Tlupova, S., Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals, SIAM J. Sci. Comput., 35 (2013), pp. B82-B106. · Zbl 1372.76077
[14] Brandt, A. and Zaslavsky, L. Y., Multiscale algorithm for atmospheric data assimilation, SIAM J. Sci. Comput., 18 (1997), pp. 949-956. · Zbl 0873.65136
[15] Bruneau, C. H., Fabrie, P., and Veersé, F., Optimal control data assimilation with an atmospheric model, Numer. Funct. Anal. Optim., 18 (1997), pp. 691-722. · Zbl 0891.49022
[16] Cai, M., Mu, M., and Xu, J., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), pp. 3325-3338. · Zbl 1213.76131
[17] Cao, Y., Gunzburger, M., He, X.-M., and Wang, X., Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition, Numer. Math., 117 (2011), pp. 601-629. · Zbl 1305.76072
[18] Cao, Y., Gunzburger, M., He, X.-M., and Wang, X., Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comp., 83 (2014), pp. 1617-1644. · Zbl 1457.65089
[19] Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., and Zhao, W., Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47 (2010), pp. 4239-4256. · Zbl 1252.76040
[20] Cao, Y., Gunzburger, M., Hua, F., and Wang, X., Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Commun. Math. Sci., 8 (2010), pp. 1-25. · Zbl 1189.35244
[21] Çeşmelio \(\breve{\mbox{g}}\) lu, A. and Rivière, B., Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput., 40 (2009), pp. 115-140. · Zbl 1203.76078
[22] Chen, J., Sun, S., and Wang, X., A numerical method for a model of two-phase flow in a coupled free flow and porous media system, J. Comput. Phys., 268 (2014), pp. 1-16. · Zbl 1349.76187
[23] Chen, W., Gunzburger, M., Hua, F., and Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), pp. 1064-1084. · Zbl 1414.76017
[24] Chen, W., Han, D., and Wang, X., Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry, Numer. Math., 137 (2017), pp. 229-255. · Zbl 1476.76089
[25] Chidyagwai, P. and Rivière, B., On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3806-3820. · Zbl 1230.76023
[26] Ştefănescu, R., Sandu, A., and Navon, I. M., POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation, J. Comput. Phys., 295 (2015), pp. 569-595, doi:10.1016/j.jcp.2015.04.030. · Zbl 1349.76535
[27] Discacciati, M., Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004.
[28] Discacciati, M. and Gerardo-Giorda, L., Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal., 38 (2018), pp. 1959-1983. · Zbl 1477.65258
[29] Discacciati, M., Gervasio, P., Giacomini, A., and Quarteroni, A., The interface control domain decomposition method for Stokes-Darcy coupling, SIAM J. Numer. Anal., 54 (2016), pp. 1039-1068. · Zbl 1337.49056
[30] Discacciati, M., Miglio, E., and Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57-74. · Zbl 1023.76048
[31] Discacciati, M. and Oyarzúa, R., A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem, Numer. Math., 135 (2017), pp. 571-606. · Zbl 1381.76162
[32] Discacciati, M., Quarteroni, A., and Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), pp. 1246-1268. · Zbl 1139.76030
[33] Douglas, C. C., Hu, X., Bai, B., He, X.-M., Wei, M., and Hou, J., A data assimilation enabled model for coupling dual porosity flow with free flow, in Proceedings of the 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science, Wuxi, China, , 2018, doi:10.1109/DCABES.2018.00085.
[34] Ervin, V. J., Jenkins, E. W., and Lee, H., Approximation of the Stokes-Darcy system by optimization, J. Sci. Comput., 59 (2014), pp. 775-794. · Zbl 1297.76054
[35] Ervin, V. J., Jenkins, E. W., and Sun, S., Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer. Anal., 47 (2009), pp. 929-952. · Zbl 1279.76032
[36] Evensen, G., The ensemble Kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems, IEEE Control Syst. Mag., 29 (2009), pp. 83-104. · Zbl 1395.93534
[37] Feng, W., He, X.-M., Wang, Z., and Zhang, X., Non-iterative domain decomposition methods for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition, Appl. Math. Comput., 219 (2012), pp. 453-463. · Zbl 1302.76173
[38] Funke, S. W., Nordaas, M., Evju, O., Alnæ s, M. S., and Mardal, K. A., Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example, Int. J. Numer. Methods Biomed. Eng., 35 (2019), e3152-27.
[39] Gao, Y., Han, D., He, X.-M., and Rüde, U., Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities, J. Comput. Phys., 454 (2022), 110968. · Zbl 07518057
[40] Gao, Y., He, X.-M., Mei, L., and Yang, X., Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model, SIAM J. Sci. Comput., 40 (2018), pp. B110-B137. · Zbl 1426.76261
[41] García-Archilla, B., Novo, J., and Titi, E. S., Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm for the Navier-Stokes equations, SIAM J. Numer. Anal., 58 (2020), pp. 410-429. · Zbl 1448.65157
[42] Gardner, M., Larios, A., Rebholz, L. G., Vargun, D., and Zerfas, C., Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations, Electron. Res. Arch., 29 (2021), pp. 2223-2247, doi:10.3934/era.2020113. · Zbl 1468.65141
[43] Gronskis, A., Heitz, D., and Mémin, E., Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation, J. Comput. Phys., 242 (2013), pp. 480-497, doi:10.1016/j.jcp.2013.01.051. · Zbl 1299.76099
[44] Gunzburger, M., He, X.-M., and Li, B., On Ritz projection and multi-step backward differentiation schemes in decoupling the Stokes-Darcy model, SIAM J. Numer. Anal., 56 (2018), pp. 397-427. · Zbl 1465.65094
[45] Han, D., He, X.-M., Wang, Q., and Wu, Y., Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media, Nonlinear Anal., 211 (2021), 112411. · Zbl 1475.35279
[46] Han, D., Sun, D., and Wang, X., Two-phase flows in karstic geometry, Math. Methods Appl. Sci., 37 (2014), pp. 3048-3063. · Zbl 1309.76204
[47] He, X.-M., Jiang, N., and Qiu, C., An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with random hydraulic conductivity and interface conditions, Internat. J. Numer. Methods Engrg., 121 (2020), pp. 712-739. · Zbl 07843219
[48] He, X.-M., Li, J., Lin, Y., and Ming, J., A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), pp. S264-S290. · Zbl 1325.76119
[49] Hestenes, M. and Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49 (1952), pp. 409-436, doi:10.6028/jres.049.044. · Zbl 0048.09901
[50] Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S., Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Springer, New York, 2009. · Zbl 1167.49001
[51] Hou, J., Hu, D., He, X.-M., and Qiu, C., Modeling and a Robin-type decoupled finite element method for dual-porosity-Navier-Stokes system with application to flows around multistage fractured horizontal wellbore, Comput. Methods Appl. Mech. Engrg., 388 (2022), 114248. · Zbl 1507.76199
[52] Hou, J., Qiu, M., He, X.-M., Guo, C., Wei, M., and Bai, B., A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow, SIAM J. Sci. Comput., 38 (2016), pp. B710-B739. · Zbl 1457.65112
[53] Jiang, N. and Qiu, C., An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations, Comput. Methods Appl. Mech. Engrg., 343 (2019), pp. 249-275. · Zbl 1440.76072
[54] Kanschat, G. and Riviére, B., A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys, 229 (2010), pp. 5933-5943. · Zbl 1425.76068
[55] De los Reyes, J. C., Numerical PDE-Constrained Optimization, , Springer, Cham, 2015. · Zbl 1312.65100
[56] Layton, W., Tran, H., and Trenchea, C., Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows, SIAM J. Numer. Anal., 51 (2013), pp. 248-272. · Zbl 1370.76173
[57] Layton, W. J., Schieweck, F., and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), pp. 2195-2218. · Zbl 1037.76014
[58] Le Dimet, F.-X., Souopgui, I., and Ngodock, H. E., Sensitivity analysis applied to a variational data assimilation of a simulated pollution transport problem, Internat. J. Numer. Methods Fluids, 83 (2017), pp. 465-482, doi:10.1002/fld.4274.
[59] Li, J., Yamamoto, M., and Zou, J., Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal., 8 (2009), pp. 361-382, doi:10.3934/cpaa.2009.8.361. · Zbl 1181.65121
[60] Li, R., Li, J., He, X.-M., and Chen, Z., A stabilized finite volume element method for a coupled Stokes-Darcy problem, Appl. Numer. Math., 133 (2018), pp. 2-24. · Zbl 1404.65221
[61] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971. · Zbl 0203.09001
[62] Liu, Y., Boubendir, Y., He, X.-M., and He, Y., New optimized Robin-Robin domain decomposition methods using Krylov solvers for the Stokes-Darcy system, SIAM J. Sci. Comput., 44 (2022), pp. B1068-B1095. · Zbl 1503.65309
[63] Liu, Y., He, Y., Li, X., and He, X.-M., A novel convergence analysis of Robin-Robin domain decomposition method for Stokes-Darcy system with Beavers-Joseph interface condition, Appl. Math. Lett., 119 (2021), 107181. · Zbl 1476.76050
[64] Mahbub, M. A. A., He, X.-M., Nasu, N. J., Qiu, C., and Zheng, H., Coupled and decoupled stabilized mixed finite element methods for non-stationary dual-porosity-Stokes fluid flow model, Internat. J. Numer. Methods Engrg., 120 (2019), pp. 803-833. · Zbl 07859721
[65] Mandel, J., Bennethum, L. S., Beezley, J. D., Coen, J. L., Douglas, C. C. C., Kim, M., and Vodacek, A., A wildland fire model with data assimilation, Math. Comput. Simul., 79 (2008), pp. 584-606. · Zbl 1155.80005
[66] Marchuk, G. I. and Shutyaev, V. P., Solvability and numerical algorithms for a class of variational data assimilation problems. A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), pp. 873-883. · Zbl 1070.65553
[67] Marchuk, G. I. and Shutyaev, V. P., Iterative algorithms for data assimilation problems, in Frontiers in Mathematical Analysis and Numerical Methods, World Scientific, River Edge, NJ, 2004, pp. 197-206.
[68] Markowich, P. A., Titi, E. S., and Trabelsi, S., Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), pp. 1292-1328, doi:10.1088/0951-7715/29/4/1292. · Zbl 1339.35246
[69] Meldi, M. and Poux, A., A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows, J. Comput. Phys., 347 (2017), pp. 207-234, doi:10.1016/j.jcp.2017.06.042. · Zbl 1380.76027
[70] Mons, V., Chassaing, J.-C., Gomez, T., and Sagaut, P., Reconstruction of unsteady viscous flows using data assimilation schemes, J. Comput. Phys., 316 (2016), pp. 255-280, doi:10.1016/j.jcp.2016.04.022. · Zbl 1349.76763
[71] Mu, M. and Xu, J., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), pp. 1801-1813. · Zbl 1146.76031
[72] Olson, E. and Titi, E. S., Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), pp. 799-840, doi:10.1023/A:1027312703252. Progress in statistical hydrodynamics (Santa Fe, NM, 2002). · Zbl 1137.76402
[73] Qiu, C., Decoupling Methods for the Time-Dependent Navier-Stokes-Darcy Interface Model, Ph.D. dissertation, Missouri University of Science and Technology, 2019.
[74] Qiu, C., He, X.-M., Li, J., and Lin, Y., A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition, J. Comput. Phys., 411 (2020), 109400. · Zbl 1436.65135
[75] Rebholz, L. G. and Zerfas, C., Simple and efficient continuous data assimilation of evolution equations via algebraic nudging, Numer. Methods Partial Differential Equations, 37 (2021), pp. 2588-2612, doi:10.1002/num.22751. · Zbl 07776087
[76] Reich, S., Data assimilation: The Schrödinger perspective, Acta Numer., 28 (2019), pp. 635-711, doi:10.1017/s0962492919000011. · Zbl 1437.62350
[77] Rihan, F. A., Collier, C. G., and Roulstone, I., Four-dimensional variational data assimilation for Doppler radar wind data, J. Comput. Appl. Math., 176 (2005), pp. 15-34. · Zbl 1083.86003
[78] Rivière, B. and Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), pp. 1959-1977. · Zbl 1084.35063
[79] Rozier, D., Birol, E., Cosme, E., Brasseur, P., Brankart, J. M., and Verron, J., A reduced-order Kalman filter for data assimilation in physical oceanography, SIAM Rev., 49 (2007), pp. 449-465. · Zbl 1118.86002
[80] Shan, L. and Zheng, H., Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 51 (2013), pp. 813-839. · Zbl 1268.76035
[81] Tang, M., Liu, Y., and Durlofsky, L. J., A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems, J. Comput. Phys., 413 (2020), 28, doi:10.1016/j.jcp.2020.109456. · Zbl 1436.76058
[82] Triantafyllou, G., Hoteit, I., Korres, G., and Petihakis, G., Ecosystem modeling and data assimilation of physical-biogeochemical processes in shelf and regional areas of the Mediterranean Sea, Appl. Numer. Anal. Comput. Math., 2 (2005), pp. 262-280. · Zbl 1073.92054
[83] Vassilev, D. and Yotov, I., Coupling Stokes-Darcy flow with transport, SIAM J. Sci. Comput., 31 (2009), pp. 3661-3684. · Zbl 1391.76757
[84] Veersé, F., Auroux, D. and Fisher, M., Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology, Optim. Eng., 1 (2000), pp. 323-339. · Zbl 0991.65051
[85] Vo, H. X. and Durlofsky, L. J., Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization, Comput. Geosci., 19 (2015), pp. 747-767. · Zbl 1392.86057
[86] Vuchkov, R. G., Petra, C. G., and Petra, N., On the derivation of quasi-Newton formulas for optimization in function spaces, Numer. Funct. Anal. Optim., 41 (2020), pp. 1564-1587, doi:10.1080/01630563.2020.1785496. · Zbl 1441.90181
[87] Yamamoto, M. and Zou, J., Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17 (2001), pp. 1181-1202. · Zbl 0987.35166
[88] Yang, Z., Li, X., He, X.-M., and Ming, J., A stochastic collocation method based on sparse grids for a stochastic Stokes-Darcy model, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), pp. 893-912. · Zbl 1487.76063
[89] Yang, Z., Ming, J., Qiu, C., He, X.-M., and Li, M., A multigrid multilevel Monte Carlo method for Stokes-Darcy model with random hydraulic conductivity and Beavers-Joseph condition, J. Sci. Comput., 90 (2022), 68. · Zbl 07458294
[90] Zerfas, C., Rebholz, L. G., Schneier, M., and Iliescu, T., Continuous data assimilation reduced order models of fluid flow, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112596, doi:10.1016/j.cma.2019.112596. · Zbl 1442.65006
[91] Zhao, B., Zhang, M., and Liang, C., Global well-posedness for Navier-Stokes-Darcy equations with the free interface, Int. J. Numer. Anal. Model., 18 (2021), pp. 569-619. · Zbl 1499.35485
[92] Zou, X., Navon, I. M., and Ledimet, F. X., An optimal nudging data assimilation scheme using parameter estimation, Quart. J. R. Meteorol. Soc., 118 (1992), pp. 1163-1186, doi:10.1002/qj.49711850808.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.