×

An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with random hydraulic conductivity and interface conditions. (English) Zbl 07843219

Summary: We propose and analyze an efficient ensemble algorithm with artificial compressibility (AC) for fast decoupled computation of multiple realizations of the stochastic Stokes-Darcy model with random hydraulic conductivity (including the one in the interface conditions), source terms, and initial conditions. The solutions are found by solving three smaller decoupled subproblems with two common time-independent coefficient matrices for all realizations, which significantly improves the efficiency for both assembling and solving the matrix systems. The fully coupled Stokes-Darcy system can be first decoupled into two smaller subphysics problems by the idea of the partitioned time stepping, which reduces the size of the linear systems and allows parallel computing for each subphysics problem. The AC further decouples the velocity and pressure which further reduces storage requirements and improves computational efficiency. We prove the long time stability and the convergence for this new ensemble method. Three numerical examples are presented to support the theoretical results and illustrate the features of the algorithm, including the convergence, stability, efficiency, and applicability.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] ArbogastT, LehrHL. Homogenization of a Darcy‐Stokes system modeling vuggy porous media. Comput Geosci. 2006;10(3):291‐302. · Zbl 1197.76122
[2] ÇeşmelioğluA, RivièreB. Primal discontinuous Galerkin methods for time‐dependent coupled surface and subsurface flow. J Sci Comput. 2009;40(1‐3):115‐140. · Zbl 1203.76078
[3] DiscacciatiM. Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows [PhD thesis]. Ecole Polytechnique Fédérale de Lausanne, Switzerland; 2004.
[4] ErvinVJ, JenkinsEW, SunS. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J Numer Anal. 2009;47(2):929‐952. · Zbl 1279.76032
[5] HanspalNS, WaghodeAN, NassehiV, WakemanRJ. Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations. Transp Porous Media. 2006;64:73‐101.
[6] HeXM, LiJ, LinY, MingJ. A domain decomposition method for the steady‐state Navier‐Stokes‐Darcy model with Beavers‐Joseph interface condition. SIAM J Sci Comput. 2015;37(5):S264‐S290. · Zbl 1325.76119
[7] HoppeRHW, PortaP, VassilevskiY. Computational issues related to iterative coupling of subsurface and channel flows. Calcolo. 2007;44(1):1‐20. · Zbl 1150.76028
[8] LaytonW, TranH, TrencheaC. Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater‐surface water flows. SIAM J Numer Anal. 2013;51(1):248‐272. · Zbl 1370.76173
[9] CaoY, GunzburgerM, HuaF, WangX. Coupled Stokes‐Darcy model with Beavers‐Joseph interface boundary condition. Commun Math Sci. 2010;8(1):1‐25. · Zbl 1189.35244
[10] GaoY, HeXM, MeiL, YangX. Decoupled, linear, and energy stable finite element method for the Cahn‐Hilliard‐Navier‐Stokes‐Darcy phase field model. SIAM J Sci Comput. 2018;40(1):B110‐B137. · Zbl 1426.76261
[11] HanD, SunD, WangX. Two‐phase flows in karstic geometry. Math Methods Appl Sci. 2014;37(18):3048‐3063. · Zbl 1309.76204
[12] BoubendirY, TlupovaS. Domain decomposition methods for solving Stokes‐Darcy problems with boundary integrals. SIAM J Sci Comput. 2013;35(1):B82‐B106. · Zbl 1372.76077
[13] CaoY, GunzburgerM, HeXM, WangX. Robin‐Robin domain decomposition methods for the steady Stokes‐Darcy model with Beaver‐Joseph interface condition. Numer Math. 2011;117(4):601‐629. · Zbl 1305.76072
[14] CaoY, GunzburgerM, HeXM, WangX. Parallel, non‐iterative, multi‐physics domain decomposition methods for time‐dependent Stokes‐Darcy systems. Math Comp. 2014;83(288):1617‐1644. · Zbl 1457.65089
[15] ChidyagwaiP, RivièreB. On the solution of the coupled Navier‐Stokes and Darcy equations. Comput Methods Appl Mech Eng. 2009;198(47‐48):3806‐3820. · Zbl 1230.76023
[16] DiscacciatiM, QuarteroniA, ValliA. Robin‐Robin domain decomposition methods for the Stokes‐Darcy coupling. SIAM J Numer Anal. 2007;45(3):1246‐1268. · Zbl 1139.76030
[17] DiscacciatiM, MiglioE, QuarteroniA. Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math. 2002;43(1‐2):57‐74. · Zbl 1023.76048
[18] ErvinVJ, JenkinsEW, LeeH. Approximation of the Stokes‐Darcy system by optimization. J Sci Comput. 2014;59(3):775‐794. · Zbl 1297.76054
[19] GalvisJ, SarkisM. Non‐matching mortar discretization analysis for the coupling Stokes‐Darcy equations. Electron Trans Numer Anal. 2007;26:350‐384. · Zbl 1170.76024
[20] GaticaGN, OyarzúaR, SayasFJ. A residual‐based a posteriori error estimator for a fully‐mixed formulation of the Stokes‐Darcy coupled problem. Comput Methods Appl Mech Eng. 2011;200(21‐22):1877‐1891. · Zbl 1228.76085
[21] GiraultV, RivièreB. DG approximation of coupled Navier‐Stokes and Darcy equations by Beaver‐Joseph‐Saffman interface condition. SIAM J Numer Anal. 2009;47(3):2052‐2089. · Zbl 1406.76082
[22] GunzburgerM, HeXM, LiB. On Ritz projection and multi‐step backward differentiation schemes in decoupling the Stokes‐Darcy model. SIAM J Numer Anal. 2018;56(1):397‐427. · Zbl 1465.65094
[23] HouJ, HeXM, GuoC, WeiM, BaiB. A dual‐porosity‐Stokes model and finite element method for coupling dual‐porosity flow and free flow. SIAM J Sci Comput. 2016;38(5):B710‐B739. · Zbl 1457.65112
[24] KanschatG, RiviéreB. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J Comput Phys. 2010;229:5933‐5943. · Zbl 1425.76068
[25] LaytonWJ, SchieweckF, YotovI. Coupling fluid flow with porous media flow. SIAM J Numer Anal. 2002;40(6):2195‐2218. · Zbl 1037.76014
[26] MuM, XuJ. A two‐grid method of a mixed Stokes‐Darcy model for coupling fluid flow with porous media flow. SIAM J Numer Anal. 2007;45(5):1801‐1813. · Zbl 1146.76031
[27] TlupovaS, CortezR. Boundary integral solutions of coupled Stokes and Darcy flows. J Comput Phys. 2009;228(1):158‐179. · Zbl 1188.76232
[28] GiraultV, VassilevD, YotovI. Mortar multiscale finite element methods for Stokes‐Darcy flows. Numer Math. 2014;127(1):93‐165. · Zbl 1396.76051
[29] WangW, XuC. Spectral methods based on new formulations for coupled Stokes and Darcy equations. J Comput Phys. 2014;257(part A):126‐142. · Zbl 1349.76574
[30] BeaversGS, JosephDD. Boundary Conditions at a Naturally Impermeable Wall. J Fluid Mech. 1967;30:197‐207.
[31] SaffmanP. On the boundary condition at the interface of a porous medium. Stud Appl Math. 1971;1:93‐101. · Zbl 0271.76080
[32] JagerW, MikelicA. On the boundary condition at the interface between a porous medium and a free fluid. SIAM J Appl Math. 2000;60:1111‐1127. · Zbl 0969.76088
[33] XuX, Graham‐BradyL. Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method. Finite Elements Anal Des. 2006;42(7):613‐622.
[34] MatthiesHG, KeeseA. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng. 2005;194:1295‐1331. · Zbl 1088.65002
[35] Babus̆kaI, NobileF, TemponeR. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal. 2007;45(3):1005‐1034. · Zbl 1151.65008
[36] XiuD, HesthavenJS. High‐order collocation methods for differential equations with random inputs. SIAM J Sci Comput. 2005;27:1118‐1139. · Zbl 1091.65006
[37] GanisB, KlieH, WheelerMF, WildeyT, YotovI, ZhangD. Stochastic collocation and mixed finite elements for flow in porous media. Comput Methods Appl Mech Eng. 2008;197(43‐44):3547‐3559. · Zbl 1194.76242
[38] NobileF, TemponeR, WebsterCG. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal. 2008;46:2309‐2345. · Zbl 1176.65137
[39] HosderS, WaltersR, PerezR. A non‐intrusive polynomial chaos method for uncertainty propagation in CFD simulations. Paper presented at: 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA‐Paper 2006‐891; 2006.
[40] ReaganMT, NajmHN, GhanemRG, KnioOM. Uncertainty quantification in reacting‐flow simulations through non‐intrusive spectral projection. Combust Flame. 2003;132:545‐555.
[41] BarthA, LangA. Multilevel Monte Carlo method with applications to stochastic partial differential equations. Int J Comput Math. 2012;89:2479‐2498. · Zbl 1270.65003
[42] KuoFY, SchwabC, SloanIH. Quasi‐Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J Numer Anal. 2012;50:3351‐3374. · Zbl 1271.65017
[43] HeltonJC, DavisFJ. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Safe. 2003;81:23‐69.
[44] RomeroVJ, BurkardtJV, GunzburgerMD, PetersonJS. Comparison of pure and “Latinized” centroidal Voronoi tessellation against various other statistical sampling methods. Reliab Eng Syst Safe. 2006;91:1266‐1280.
[45] JiangN, LaytonW. An algorithm for fast calculation of flow ensembles. Int J Uncertain Quantif. 2014;4:273‐301. · Zbl 1301.65099
[46] SimonciniV, GallopulosE. Convergence of BLOCK GMRES and matrix polynomials. Linear Algebr Appl. 1996;247:97‐119. · Zbl 0861.65023
[47] FengYT, OwenDRJ, PerićD. A block conjugate gradient method applied to linear systems with multiple right hand sides. Comp Meth Appl Mech. 1995;127:1‐4.
[48] JiangN, LaytonW. Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer Methods Partial Differ Equ. 2015;31:630‐651. · Zbl 1325.65135
[49] JiangN. A higher order ensemble simulation algorithm for fluid flows. J Sci Comput. 2015;64:264‐288. · Zbl 1327.65175
[50] JiangN, KayaS, LaytonW. Analysis of model variance for ensemble based turbulence modeling. Comput Appl Math. 2015;15:173‐188. · Zbl 1311.76033
[51] GunzburgerM, JiangN, SchneierM. An ensemble‐proper orthogonal decomposition method for the nonstationary Navier‐Stokes equations. SIAM J Numer Anal. 2017;55(1):286‐304. · Zbl 1394.76067
[52] GunzburgerM, JiangN, SchneierM. A higher‐order ensemble/proper orthogonal decomposition method for the nonstationary Navier‐Stokes equations. Int J Numer Anal Model. 2018;15:608‐627. · Zbl 1402.35207
[53] JiangN. A second‐order ensemble method based on a blended backward differentiation formula timestepping scheme for time‐dependent Navier‐Stokes equations. Numer Methods Partial Differ Equ. 2017;33:34‐61. · Zbl 1469.76074
[54] JiangN, SchneierM. An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numer Methods Partial Differ Equ. 2018;34:2129‐2152. · Zbl 1407.76099
[55] MohebujjamanM, RebholzLG. An efficient algorithm for computation of MHD flow ensembles. Comput Appl Math. 2017;17:121‐137. · Zbl 1419.76443
[56] GunzburgerM, JiangN, WangZ. An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J Numer Anal. 2019;39:1180‐1205. · Zbl 1466.65133
[57] GunzburgerM, JiangN, WangZ. A second‐order time‐stepping scheme for simulating ensembles of parameterized flow problems. Comput Appl Math. 2019;19:681‐701. · Zbl 1421.76157
[58] FiordilinoJA. A second order ensemble timestepping algorithm for natural convection. SIAM J Numer Anal. 2018;56:816‐837. · Zbl 1448.65129
[59] JiangN. A pressure‐correction ensemble scheme for computing evolutionary Boussinesq equations. J Sci Comput. 2019;80:315‐350. · Zbl 1466.65137
[60] JiangN, QiuC. An efficient ensemble algorithm for numerical approximation of stochastic Stokes‐Darcy equations. Comput Methods Appl Mech Eng. 2019;343:249‐275. · Zbl 1440.76072
[61] ChorinAJ. A numerical method for solving incompressible viscous flow problems. J Comput Phys. 1967;2:12. · Zbl 0149.44802
[62] TemamR. Une méthode d’approximation de la solution des équations de Navier‐Stokes. Bull Soc Math France. 1968;96:115‐152. · Zbl 0181.18903
[63] TemamR. Sur l’approximation de la solution des équations de Navier‐Stokes par la méthode des pas fractionnaires. I Arch Ration Mech Anal. 1969;32:135‐153. · Zbl 0195.46001
[64] TemamR. Sur l’approximation de la solution des équations de Navier‐Stokes par la méthode des pas fractionnaires. II Arch Ration Mech Anal. 1969;32:377‐385. · Zbl 0207.16904
[65] KuznetsovB, VladimirovaN, YanenkoN. Numerical Calculation of the Symmetrical Flow of Viscous Incompressible Liquid Around a Plate (in Russian). Studies in Mathematics and its Applications. Moscow, Russia: Nauka; 1966.
[66] GuermondJ, MinevP. High‐order time stepping for the incompressible Navier‐Stokes equations. SIAM J Sci Comput. 2015;37(6):A2656‐A2681. · Zbl 1382.65315
[67] DeCariaV, LaytonW, McLaughlinM. A conservative, second order, unconditionally stable artificial compression method. Comput Methods Appl Mech Eng2017; 325: 733‐747. · Zbl 1439.76059
[68] PhilippeA, PierreF. Convergence results for the vector penalty‐projection and two‐step artificial compressibility methods. Discrete Contin Dyn Syst Ser B. 2012;17:1383‐1405. · Zbl 1245.35079
[69] ShenJ. On error estimates of the penalty method for unsteady Navier‐Stokes equations. SIAM J Numer Anal. 1995;32:386‐403. · Zbl 0822.35008
[70] ShenJ. On a new pseudocompressibility method for the incompressible Navier‐Stokes equations. Appl Numer Math. 1996;21:71‐90. · Zbl 0853.76052
[71] GiraultV, RaviartP. Finite Element Methods for Navier‐Stokes Equations. New York: Springer‐Verlag; 1986. · Zbl 0585.65077
[72] GunzburgerM. Finite Element Methods for Viscous Incompressible Flows‐A Guide to Theory, Practices, and Algorithms. Boston, MA: Academic Press; 1989. · Zbl 0697.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.