×

Generalized Schrödinger operators on the Heisenberg group and Hardy spaces. (English) Zbl 1540.35135

Summary: Let \(L = - \Delta_{\mathbb{H}^n} + \mu\) be a generalized Schrödinger operator on the Heisenberg group \(\mathbb{H}^n\), where \(\Delta_{\mathbb{H}^n}\) is the sub-Laplacian, and \(\mu\) is a nonnegative Radon measure satisfying certain conditions. In this paper, we first establish some estimates of the fundamental solution and the heat kernel of \(L\). Applying these estimates, we then study the Hardy spaces \(H_L^1( \mathbb{H}^n)\) introduced in terms of the maximal function associated with the heat semigroup \(e^{- t L} \); in particular, we obtain an atomic decomposition of \(H_L^1( \mathbb{H}^n)\), and prove the Riesz transform characterization of \(H_L^1( \mathbb{H}^n)\). The dual space of \(H_L^1( \mathbb{H}^n)\) is also studied.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
42B30 \(H^p\)-spaces
Full Text: DOI

References:

[1] Bonfiglioli, A.; Lanconelli, E., Subharmonic functions on Carnot groups, Math. Ann., 325, 97-122, 2003 · Zbl 1017.31003
[2] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, 2007, Springer-Verlag: Springer-Verlag Berlin · Zbl 1128.43001
[3] Bui, T. A.; Duong, X. T.; Ly, F. K., Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type, Trans. Am. Math. Soc., 370, 7229-7292, 2018 · Zbl 1404.42043
[4] Bui, T. A.; Do, T. D.; Trong, N. N., Heat kernels of generalized degenerate Schrödinger operators and Hardy spaces, J. Funct. Anal., 280, Article 108785 pp., 2021 · Zbl 1502.35050
[5] Bui, T. A.; Hong, Q.; Hu, G., Hardy spaces associated to Schrödinger operators with nonnegative polynomial potentials on stratified groups and their dual spaces, J. Differ. Equ., 353, 147-224, 2023 · Zbl 1508.42024
[6] Citti, G.; Garofalo, N.; Lanconelli, E., Harnack’s inequality for sum of square of vector fields plus a potential, Am. J. Math., 115, 699-743, 1993 · Zbl 0795.35018
[7] Cygan, J., Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Am. Math. Soc., 83, 69-70, 1981 · Zbl 0475.43010
[8] Dziubánski, J.; Zienkiewicz, J., Hardy space \(H^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam., 15, 279-296, 1999 · Zbl 0959.47028
[9] Dziubánski, J.; Garrigós, G.; Martinez, T.; Torrea, J. L.; Zienkiewicz, J., BMO spaces related to Schrödinger operator with potential satisfying reverse Hölder inequality, Math. Z., 249, 329-356, 2005 · Zbl 1136.35018
[10] Fefferman, C., The uncertainty principle, Bull. Am. Math. Soc. (N.S.), 9, 129-206, 1983 · Zbl 0526.35080
[11] Folland, G. B., A fundamental solution for a sub-elliptic operator, Bull. Am. Math. Soc., 79, 83-133, 1973
[12] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207, 1975 · Zbl 0312.35026
[13] Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, 1982, Princeton University Press: Princeton University Press Princeton · Zbl 0508.42025
[14] Gutiérrez, C. E.; Lanconelli, E., Maximum principle, nonhomogeneous Harnack inequality, and Liouville theorems for X-elliptic operators, Commun. Partial Differ. Equ., 28, 1833-1862, 2003 · Zbl 1064.35036
[15] Jerison, D.; Sanchez-Calle, A., Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J., 35, 835-854, 1986 · Zbl 0639.58026
[16] Jiang, R.; Jiang, X.; Yang, D., Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups, Rev. Mat. Complut., 24, 251-275, 2011 · Zbl 1216.43001
[17] Killip, R.; Visan, M.; Zhang, X., Riesz transforms outside a convex obstacle, Int. Math. Res. Not., 19, 5875-5921, 2016 · Zbl 1404.42048
[18] Kurata, K., An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. Lond. Math. Soc. (2), 62, 3, 885-903, 2000 · Zbl 1013.35020
[19] Li, H., Estimations \(L^p\) des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161, 152-218, 1999 · Zbl 0929.22005
[20] Lin, C.-C.; Liu, H., \(B M O_L( \mathbb{H}^n)\) spaces and Carleson measures for Schrödinger operators, Adv. Math., 228, 1631-1688, 2011 · Zbl 1235.22012
[21] Lin, C.-C.; Liu, H.; Liu, Y., Hardy spaces associated with Schrödinger operators on the Heisenberg group, Available at
[22] Lu, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying a Hörmander’s condition and applications, Rev. Mat. Iberoam., 8, 367-439, 1992 · Zbl 0804.35015
[23] Shen, Z., \( L^p\) estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45, 513-546, 1995 · Zbl 0818.35021
[24] Shen, Z., On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal., 167, 521-564, 1999 · Zbl 0936.35051
[25] Wu, L.; Yan, L., Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators, J. Funct. Anal., 270, 3709-3749, 2016 · Zbl 1356.42016
[26] Yang, D.; Yang, S., Second-order Riesz transforms and maximal inequalities associated with magnetic Schrödinger operators, Can. Math. Bull., 58, 432-448, 2015 · Zbl 1321.42043
[27] Yang, D.; Zhou, Y., Localized Hardy spaces \(H^1\) related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Am. Math. Soc., 363, 1197-1239, 2011 · Zbl 1217.42044
[28] Yang, D.; Yang, D.; Zhou, Y., Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Anal., 30, 271-300, 2009 · Zbl 1172.47018
[29] Zhang, J.; Yang, D., Quantitative boundedness of Littlewood-Paley functions on weighted Lebesgue spaces in the Schrödinger setting, J. Math. Anal. Appl., 484, Article 123731 pp., 2020 · Zbl 1431.42037
[30] Zhong, J., Harmonic analysis for some Schrödinger type operators, 1993, Princeton University, Ph.D. Thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.