×

Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators. (English) Zbl 1356.42016

This paper is devoted to the study of estimates of heat kernel of generalized Schrödinger operators and the related Hardy spaces. Let \(\mathcal{L}=-\Delta+\mu\) be the generalized Schrödinger operator on \(\mathbb{R}^n\) with \(n\geq 3\), where \(\mu\not\equiv0\) is a nonnegative Radon measure satisfying the scale-invariant Kato condition: for all \(x\in\mathbb{R}^n\) and \(0<r<R<\infty\), \[ \mu(B(x,r))\leq C_0(\frac rR)^{n-2+\delta}\mu(B(x,R)), \] and also the doubling condition: for all \(x\in\mathbb{R}^n\) and \(0<r< \infty\), \[ \mu(B(x,2r))\leq C_1\{\mu(B(x,r))+r^{n-2}\}, \] where \(C_0,C_1,\delta\) are constants independent of \(x, r\) and \(R\). In this paper, the author prove that the heat kernel \(\mathcal{K}_t\) associated with \(\mathcal{L}\) satisfies the following upper estimate: \[ 0\leq \mathcal{K}_t(x,y)\leq Ch_t(x-y)e^{-\varepsilon d_\mu(x,y,t)}, \] for some \(\varepsilon>0\), where \(h_t(x)=(4\pi t)^{-n/2}e^{-|x|^2/(2t)}\) and \(d_\mu(x,y,t)\) is some parabolic type distance function with respect to \(\mu\). As applications, a Hardy space with respect to \(\mathcal{L}\) is introduced via maximal functions of heat semigroup \(e^{-t\mathcal{L}}\) and characterized via atoms and Riesz transforms. The dual space of this Hardy space is also obtained.
Reviewer: Wen Yuan (Beijing)

MSC:

42B35 Function spaces arising in harmonic analysis
35J08 Green’s functions for elliptic equations
35J10 Schrödinger operator, Schrödinger equation
35K08 Heat kernel
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47F05 General theory of partial differential operators
42B30 \(H^p\)-spaces
42B25 Maximal functions, Littlewood-Paley theory
42B15 Multipliers for harmonic analysis in several variables
42B37 Harmonic analysis and PDEs
Full Text: DOI

References:

[1] Agmon, S., Lectures on Exponential Decays of Solutions of Second-Order Elliptic Equations (1982), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0503.35001
[2] Albrecht, D.; Duong, X. T.; McIntosh, A., Operator theory and harmonic analysis, (Instructional Workshop on Analysis and Geometry, Part III. Instructional Workshop on Analysis and Geometry, Part III, Canberra, 1995. Instructional Workshop on Analysis and Geometry, Part III. Instructional Workshop on Analysis and Geometry, Part III, Canberra, 1995, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34 (1996), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra), 77-136 · Zbl 0903.47010
[3] Aronson, D. G.; Serrin, J., Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 25, 81-122 (1967) · Zbl 0154.12001
[4] Duong, X. T.; Li, J., Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus, J. Funct. Anal., 264, 1409-1437 (2013) · Zbl 1271.42033
[5] Duong, X. T.; Yan, L. X., New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math., 58, 1375-1420 (2005) · Zbl 1153.26305
[6] Duong, X. T.; Yan, L. X., Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc., 18, 943-973 (2005) · Zbl 1078.42013
[7] Duong, X. T.; Yan, L. X.; Zhang, C., On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal., 266, 4, 2053-2085 (2014) · Zbl 1292.35099
[8] Dziubański, J.; Garrigós, G.; Martínez, T.; Torrea, J. L.; Zienkiewicz, J., BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249, 2, 329-356 (2005) · Zbl 1136.35018
[9] Dziubański, J.; Zienkiewicz, J., Smoothness of densities of semigroups of measures on homogeneous groups, Colloq. Math., 66, 2, 227-242 (1994) · Zbl 0838.43010
[10] Dziubański, J.; Zienkiewicz, J., Hardy space \(H^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam., 15, 2, 279-296 (1999) · Zbl 0959.47028
[11] Dziubański, J.; Zienkiewicz, J., \(H^p\) spaces for Schrödinger operators, (Fourier Analysis and Related Topics. Fourier Analysis and Related Topics, Banach Center Publ., vol. 56 (2002)), 45-53 · Zbl 1039.42018
[12] Dziubański, J.; Zienkiewicz, J., \(H^p\) spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math., 98, 1, 5-38 (2003) · Zbl 1083.42015
[13] Dziubański, J.; Zienkiewicz, J., Hardy space \(H^1\) for Schrödinger operators with certain potentials, Studia Math., 164, 39-53 (2004) · Zbl 1061.47040
[14] Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078
[15] Goldeberg, D., A local version of real Hardy spaces, Duke Math. J., 46, 1, 27-42 (1979) · Zbl 0409.46060
[16] Hofmann, S.; Lu, G. Z.; Mitrea, D.; Mitrea, M.; Yan, L. X., Hardy spaces associated to nonnegative self-adjoint operator satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc., 214, 1007 (2011) · Zbl 1232.42018
[17] Kurata, K., An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. Lond. Math. Soc. (2), 62, 3, 885-903 (2000) · Zbl 1013.35020
[18] Ma, T.; Stinga, P.; Torrea, J.; Zhang, C., Regularity properties of Schrödinger operators, J. Math. Anal. Appl., 388, 2, 817-837 (2012) · Zbl 1232.35039
[19] Martinez, C.; Sanz, M., The Theory of Fractional Powers of Operators (2001), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0971.47011
[20] Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Math. Soc. Monogr., vol. 31 (2005), Princeton Univ. Press · Zbl 1082.35003
[21] Saloff-Coste, L., Aspects of Sobolev-Type Inequalities, London Math. Soc. Lecture Note Ser., vol. 289 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0991.35002
[22] Shen, Z., \(L^p\) estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45, 2, 513-546 (1995) · Zbl 0818.35021
[23] Shen, Z., On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal., 167, 2, 521-564 (1999) · Zbl 0936.35051
[24] Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0821.42001
[25] Wang, X.; Wang, H., On the divided difference form of Faàdi Bruno’s function, J. Comput. Math., 24, 553-560 (2006) · Zbl 1103.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.