×

Exact solitary wave and periodic-peakon solutions of the complex Ginzburg-Landau equation: dynamical system approach. (English) Zbl 1540.35106

Summary: Using the bifurcation theory of the planar dynamical system, we study the exact solutions of the complex Ginzburg-Landau equation which is a popular model in mathematical physics. All possible exact explicit parametric representations of traveling wave solutions are given under different parameter conditions, including the solitary wave solutions, periodic wave solutions, compacton solutions pseudo-peakon solutions and periodic peakon solutions. In more general parametric conditions, all possible solutions are caught in one dragnet.

MSC:

35C08 Soliton solutions
35Q56 Ginzburg-Landau equations
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

ATFM
Full Text: DOI

References:

[1] Arshed, S.; Biswas, A.; Mallawi, F.; Belic, M. R., Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms, Phys. Lett. A, 383, Article 126026 pp. (2019) · Zbl 1479.35831
[2] Byrd, P. F.; Fridman, M. D., Handbook of Elliptic Integrals for Engineers and Sciensists (1971), Springer: Springer Berlin · Zbl 0213.16602
[3] Das, A.; Biswas, A.; Ekici, M.; Zhou, Q.; Alshomrani, A. S.; Belic, M. R., Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion, Chin. J. Phys., 61, 255-261 (2019) · Zbl 07824988
[4] Djob, R. B.; Kenfact-Jiotsa, A.; Govindarajan, A., Non-lagrangian approach for coupled complex Ginzburg-Landau systems with higher order-dispersion, Chaos Solitons Fractals, 132, Article 109578 pp. (2020)
[5] Elzehri, H.; Abdel Kader, A. H.; Abdel Latif, M. S., Kink wave, dark and bright soliton solutions for complex Ginzburg-Landau equation using Lie symmetry method, Optik, 241, Article 167048 pp. (2021)
[6] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, 212-218 (2000) · Zbl 1167.35331
[7] Fang, J.; Mou, D.; Wang, Y.; Zhang, H.; Dai, C.; Chen, Y., Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation, Results Phys., 20, Article 103710 pp. (2021)
[8] Fu, Z.; Liu, S.; Zhao, Q., New Jacobi elliptic function expansion and new periodicsolutions of nonlinear wave equations, Phys. Lett. A, 290, 72-76 (2001) · Zbl 0977.35094
[9] Kudryashov, N. A., Truncated expansions and nonlinear integrable partial differentialequations, Phys. Lett. A, 178, 99-104 (1993)
[10] Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlineardifferential equations, Chaos Solitons Fractals, 24, 1217-1231 (2005) · Zbl 1069.35018
[11] Kudryashov, N. A., One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 6, 2248-2253 (2012) · Zbl 1250.35055
[12] Kudryashov, N. A., First integrals and general solution of the complex Ginzburg-Landau equation, Appl. Math. Comput., 386, Article 125407 pp. (2020) · Zbl 1497.35445
[13] Kudryashov, N. A., Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations, Appl. Math. Comput., 371, Article 124972 pp. (2020) · Zbl 1433.35367
[14] Li, J., Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions (2013), Science Press: Science Press Beijing
[15] Li, J.; Chen, G., On a class of singular nonlinear traveling wave equations, Int. J. Bifur. Chaos., 17, 4049-4065 (2007) · Zbl 1158.35080
[16] Li, J.; Qiao, Z., Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations, J. Math. Phys., 54, 1-13 (2013)
[17] Li, J.; Zhou, W.; Chen, G., Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifur. Chaos., 26, Article 1650207 pp. (2016) · Zbl 1352.34054
[18] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Jacobi Elliptic function expansion method and periodicwave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69-74 (2001) · Zbl 0972.35062
[19] Malfliet, W.; Hereman, W., The tanh method: II. Perturbation technique for conservativesystems, Phys. Scr., 54, 569-575 (1996) · Zbl 0942.35035
[20] Mancas, S. C.; Choudhury, S. R., The complex cubic-quintic Ginzburg-Landau equation: Hopf bifurcations yielding traveling waves, Math. Comput. Simulation, 74, 281-291 (2007) · Zbl 1111.35081
[21] Mirzazadeh, M.; Ekici, M.; Sonmezoglu, A.; Eslami, M.; Zhou, Q.; Kara, A. H.; Milovic, D.; Majid, F. B.; Biswas, A.; Belic, M., Optical solitons with complex Ginzburg-Landau equation, Nonlinear Dynam., 85, 1979-2016 (2016) · Zbl 1349.35364
[22] Osman, M.; Lu, D.; Khater, M.; Attia, R., Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192, Article 162927 pp. (2019)
[23] Parkes, E.; Duffy, B., An automated tanh-function method for finding solitary wavesolutions to no-linear evolution equations, Comput. Phys. Comm., 98, 288-300 (1996) · Zbl 0948.76595
[24] Qiu, Y.; Malomed, B. A.; Mihalache, D.; Zhu, X.; Zhang, L.; He, Y., Soliton dynamics in a fractional complex Ginzburg-Landau model, Chaos Solitons Fractals, 131, Article 109471 pp. (2020) · Zbl 1495.35200
[25] Shi, D.; Liu, Q., Superconvergence analysis of a two grid finite element method for Ginzburg-Landau equation, Appl. Math. Comput., 365, Article 124691 pp. (2020) · Zbl 1433.65222
[26] Yan, Y.; Liu, W., Stable transmission of solitons in the complex cubic quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects, Appl. Math. Lett., 98, 171-176 (2019) · Zbl 1426.35068
[27] Yildirim, Y.; Biswas, A.; Jawad, A. J.M.; Ekici, M.; Zhou, Q.; Alzahrani, A. K.; Belic, M. R., Optical solitons with differential group delay for complex Ginzburg-landau equation, Results Phys., 16, Article 102888 pp. (2020)
[28] Yildirim, Y.; Biswas, A.; Khan, S.; Alshomrani, A. S.; Belic, M. R., Optical solitons with differential group delay for complex Ginzburg-landau equation having kerr and parabolic laws of refractive index, Optik, 202, Article 163737 pp. (2020)
[29] Zayed, E. M.; Alngar, M. E.; El-Horbaty, M.; Biswas, A.; Alshomrani, A. S.; Ekici, M.; Yildirim, Y.; Belic, M. R., Optical solitons with complex Ginzburg-landau equation having a plethora of nonlinear forms with a couple of improved integration norms, Optik, 207, Article 163804 pp. (2020)
[30] Zhu, W.; Xia, Y.; Bai, Y., Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Appl. Math. Comput., 382, Article 125342 pp. (2020) · Zbl 1508.35171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.