×

Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. (English) Zbl 1508.35171

Summary: Employing the bifurcation theory of planar dynamical system, we study the bifurcations and exact solutions of the complex Ginzburg-Landau equation. All possible explicit representations of travelling wave solutions are given under different parameter regions, including compactons, kink and anti-kink wave solutions, solitary wave solutions, periodic wave solutions and so on. It is interesting that first integral of the travelling system changes with respect to the parameters. Consequently, the phase portraits will change with respect to the changes of parameters. Finally, we conclude our main results in a theorem at the end of the paper.

MSC:

35Q56 Ginzburg-Landau equations
35C07 Traveling wave solutions
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Biswas, A., Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms, Optik, 174, 207-215 (2018)
[2] Byrd, P. F.; Fridman, M. D., Handbook of Elliptic Integrals for Engineers and Sciensists (1971), Springer: Springer Berlin · Zbl 0213.16602
[3] Chen, A.; Guo, L.; Deng, X., Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differ. Equ., 261, 5324-5349 (2016) · Zbl 1358.34051
[4] Chen, A.; Huang, W.; Li, J., Qualitative behavior and exact travelling wave solutions of the zhiber-shabat equation, J. Comput. Appl. Math., 230, 559-569 (2009) · Zbl 1167.35457
[5] Dai, H. H.; Fan, E. G., Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation, Chaos, Solitons & Fractals, 22, 93-101 (2004) · Zbl 1062.37066
[6] Deng, X., Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput., 204, 2, 733-737 (2008) · Zbl 1160.35515
[7] Du, Z.; Li, J.; Li, X., The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275, 988-1007 (2018) · Zbl 1392.35223
[8] Fan, E. G., Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and n-fold darboux transformation, J. Math. Phys., 41, 7769-7782 (2000) · Zbl 0986.37059
[9] Fan, E. G., Traveling wave solutions for nonlinear equations using symbolic computation, Comput. Math. Appl., 43, 671-680 (2002) · Zbl 1002.35107
[10] Fang, S.; Guo, C.; Guo, B. L., Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction, Acta Math. Sci., 32, 1073-1082 (2012) · Zbl 1274.35038
[11] Feng, B.; Maruno, K.; Ohta, Y., A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue, J. Phys. A-Math. Theor., 50, 055201 (2017) · Zbl 1368.37077
[12] Feng, D. H.; Li, J.; Jiao, J., Dynamical behavior of singular traveling waves of (n+1)-dimensional nonlinear Klein-Gordon equation, Qual. Theor. Dyn. Syst., 18, 1, 265-287 (2019) · Zbl 1418.34089
[13] Fu, H.; Dai, Z., Exact chirped solitary-wave solutions for Ginzburg-Landau equation, Commun. Nonlinear Sci. Numer. Simul., 15, 1462-1465 (2010) · Zbl 1221.81052
[14] Geng, X.; Shen, J.; Xue, B., A hermitian symmetric space Fokas-Lenells equation: solitons, breathers, rogue waves, Ann. Phys., 404, 115-131 (2019) · Zbl 1414.35194
[15] Guo, X., Two expanding integrable systems of the GI soliton hierarchy and a generalized GI hierarchy with self-consistent sources as well as its extension form, Commun. Nonlinear Sci. Numer. Simul., 14, 4065-4070 (2009) · Zbl 1221.37127
[16] Guo, B.; Lu, B.; Wan, G., Stability of travelling wave solutions of the derivative Ginzburg-Landau equations, Commun. Nonlinear Sci. Numer. Simul., 2, 150-156 (1997) · Zbl 0923.35162
[17] Goyal, A.; Alka, T. S.R.; Kumar, C. N., Lorentzian-type soliton solution of ac-driven complex Ginzburg-Landau equation, Appl. Math. Comput., 218, 11931-11937 (2012) · Zbl 1290.35258
[18] He, B.; Meng, Q., Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equation, Commun. Nonlinear Sci. Numer. Simul., 15, 1783-1790 (2010) · Zbl 1222.35184
[19] He, B.; Meng, Q., Periodic traveling wave solutions and their limit forms for the (n+1)-dimensional double sinh-gordon equation, Optik (Stuttg), 134, 239-256 (2017)
[20] He, B.; Rui, W.; Long, Y., New exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation, Appl. Math. Comput., 229, 159-172 (2014) · Zbl 1364.35197
[21] Kadkhoda, N.; Jafari, H., Analytical solutions of the Gerdjikov-Ivanov equation by using \(\exp ( \phi ( \xi ) )\)-expansion method, Optik (Stuttg), 139, 72-76 (2017)
[22] Khater, M.; Seadawy, A. R.; Lu, D., Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications, Optik, 158, 434-450 (2018)
[23] Khater, M.; Seadawy, A. R.; Lu, D., Optical soliton and bright-dark solitary wave solutions of nonlinear complex Kundu-Eckhaus dynamical equation of the ultra-short femtosecond pulses in an optical fiber, Opt. Quantum Electron., 50, 155 (2018)
[24] Li, Z., New exact homoclinic wave and periodic wave solutions for the Ginzburg-Landau equation, Appl. Math. Comput., 217, 1549-1554 (2010) · Zbl 1203.35273
[25] Li, J., Singular nonlinear travelling wave equations: bifurcations and exact solutions (2013), Science Press: Science Press Beijing
[26] Li, J.; Chen, G., On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation Chaos, 17, 11, 4049-4065 (2007) · Zbl 1158.35080
[27] Li, J.; Liu, Z., Smooth and non-smooth travelling waves in a nonlinearly dispersive equation, Appl. Math. Model., 25, 41-56 (2000) · Zbl 0985.37072
[28] Li, J.; Qiao, Z., Bifurcations of traveling wave solutions of an integrable equation, J. Math. Phys., 51, Article 042703 pp. (2010) · Zbl 1310.37034
[29] Li, J.; Qiao, Z., Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations, J. Math. Phys., 54, 12, Article 123501 pp. (2013) · Zbl 1380.35050
[30] Li, J.; Shi, J., Bifurcations and exact solutions of ac-driven complex Ginzburg-Landau equation, Appl. Math. Comput., 221, 102-110 (2013) · Zbl 1329.35300
[31] Liu, H.; Li, J., Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations, J. Comput. Appl. Math., 257, 144-156 (2014) · Zbl 1302.37034
[32] Liu, H.; Yue, C., Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations, Nonlinear Dyn., 89, 3, 1989-2000 (2017) · Zbl 1375.37166
[33] Ma, W.; Liu, Y., Invariant subspaces and exact solutions of a class of dispersive evolution equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3795-3801 (2012) · Zbl 1250.35057
[34] Manafian, J.; Lakestani, M., Optical soliton solutions for the Gerdjikov-Ivanov model via \(\tan ( \phi / 2 )\)-expansion method, Optik, 127, 9603-9620 (2016)
[35] Nie, H.; Zhu, J.; Geng, X., Trace formula and new form of n-soliton to the Gerdjikov-Ivanov equation, Anal. Math. Phys., 8, 415-426 (2017) · Zbl 1402.35068
[36] Pelap, F.; Kamga, J.; Fomethe, A.; Kenfack, A.; Faye, M., Wave dynamics in a modified quintic complex Ginzburg-Landau system, Phys. Lett. A, 373, 1015-1018 (2009) · Zbl 1228.35237
[37] Peng, Y.; Song, Y., Existence of traveling wave solutions for a reaction-diffusion equation with distributed delays, Nonlinear Anal.-Theory Methods Appl., 67, 2415-2423 (2007) · Zbl 1361.34047
[38] Raju, T. S.; Porsezian, K., On solitary wave solutions of ac-driven complex Ginzburg-Landau equation, J. Phys. A: Math. Gen., 39, 1853-1858 (2006) · Zbl 1089.35538
[39] Rezazadeh, H., New solitons solutions of the complex Ginzburg-Landau equation with kerr law nonlinearity, Optik, 167, 218-227 (2018)
[40] Rogers, C.; Chow, K. W., Localized pulses for the quintic derivative nonlinear Schrödinger equation on a continuous-wave background, Phys. Rev. E, 86, 037601 (2012)
[41] Salas, A. H., Exact solutions for the general fifth KdV equation by the exp function method, Appl. Math. Comput., 205, 1, 291-297 (2008) · Zbl 1160.35525
[42] Gómez, C. A.; Salas, A. H., The Cole-Hopf transformation and improved tanhVoth method applied to new integrable system (KdV6), Appl. Math. Comput., 204, 2, 957-962 (2008) · Zbl 1157.65457
[43] Song, Y.; Jiang, H.; Liu, Q.; Yuan, Y., Spatiotemporal dynamics of the diffusive mussel-algae model near turing-hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16, 4, 2030-2062 (2017) · Zbl 1382.35035
[44] Song, Y.; Tang, X., Stability, steady-state bifurcations, and turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139, 3, 371-404 (2017) · Zbl 1373.35324
[45] Song, Y.; Wu, S.; Wang, H., Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equ., 267, 6316-6351 (2019) · Zbl 1423.35027
[46] Shehata, A., The traveling wave solutions of the perturbed nonlinear schrödinger equation and the cubic-quintic Ginzburg-Landau equation using the modified (G′/G)-expansion method, Appl. Math. Comput., 217, 1-10 (2010) · Zbl 1200.65084
[47] Tang, S.; Huang, W., Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation, Appl. Math. Comput., 189, 1774-1781 (2007) · Zbl 1124.35077
[48] Tian, L.; Yin, J., New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations, Chaos, Solitons & Fractals, 20, 2, 289-299 (2004) · Zbl 1046.35101
[49] Triki, H.; Alqahtani, R. T.; Zhou, Q.; Biswas, A., New envelope solitons for Gerdjikov-Ivanov model, Superlattices Microstruct., 111, 326-334 (2017)
[50] Wazwaz, A. M., Kinks and travelling wave solutions for Burgers-like equations, Appl. Math. Lett., 38, 174-179 (2014) · Zbl 1314.35154
[51] Wazwaz, A. M., The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations, Commun. Nonlinear Sci. Numer. Simul., 13, 584-592 (2008) · Zbl 1155.35446
[52] Wazwaz, A. M., The variable separated ODE and the tanh methods for solving the combined and the double combined sinh-cosh-Gordon equations, Appl. Math. Comput., 177, 745-754 (2006) · Zbl 1096.65104
[53] Wen, Z., Bifurcations and exact traveling wave solutions of a new two-component system, Nonlinear Dyn., 87, 3, 1917-1922 (2017) · Zbl 1384.35007
[54] Wu, L.; He, G.; Geng, X., Quasi-periodic solutions to the two-component nonlinear Klein-Gordon equation, J. Geom. Phys., 66, 1-17 (2013) · Zbl 1277.35299
[55] Xia, Y.; Grasic, M.; Huang, W.; Romanovski, V. G., Limit cycles in a model of Olfactory Snsory Neurons, Int. J. Bifurcation Chaos, 29, 3, 1950038 (2019) · Zbl 1414.34041
[56] Xia, B.; Qiao, Z.; Li, J., An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions, Commun. Nonlinear Sci. Numer. Simul., 63, 292-306 (2018) · Zbl 1524.37064
[57] Xu, Z.; Xiao, D., Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differ. Equ., 260, 1, 268-303 (2016) · Zbl 1439.35281
[58] Xu, Z.; Xiao, D., Regular traveling waves for a nonlocal diffusion equation, J. Differ. Equ., 258, 1, 191-223 (2015) · Zbl 1323.35089
[59] Yasar, E.; Yildirim, Y.; Zhou, Q.; Moshokoa, S. P.; Ullah, M. Z.; Triki, H.; Biswas, A.; Belic, M., Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method, Superlattices Microstruct., 111, 487-498 (2017)
[60] Yi, F.; Wei, J.; Shi, J., Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal.-Real World Appl., 9, 1038-1051 (2008) · Zbl 1146.35384
[61] Yilmaz, H., Exact solutions of the Gerdjikov-Ivanov equation using darboux transformations, J. Nonlinear Math. Phys., 22, 32-46 (2015) · Zbl 1420.35064
[62] Yomba, E.; Zakeri, G., Exact solutions in nonlinearly coupled cubic-quintic complex ginzburg-landau equations, Phys. Lett. A, 377, 148-157 (2013) · Zbl 1298.35212
[63] Yu, L.; Tian, L., Loop solutions, breaking kink (or anti-kink) wave solutions, solitary wave solutions and periodic wave solutions for the two-component degasperis-procesi equation, Nonlinear Anal.-Real World Appl., 15, 140-148 (2014) · Zbl 1295.35174
[64] Zhang, T.; Li, J., Exact torus knot periodic orbits and Homoclinic orbits in a class of three-dimensional flows generated by a planar cubic system, Int. J. Bifurcation Chaos, 27, 13, 1-12 (2017) · Zbl 1382.37024
[65] Zhang, T.; Li, J., Exact solitons, periodic peakons and compactons in an optical soliton model, Nonlinear Dyn., 91, 2, 1371-1381 (2018) · Zbl 1390.35350
[66] Zhang, L.; Tang, R., Bifurcation of peakons and cuspons of the integrable Novikov equation, Proc. Rom. Acad. Ser. A-Math. Phys., 16, 2, 168-175 (2015)
[67] Zhang, B.; Xia, Y.; Zhu, W.; Bai, Y., Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh-cosh-Gordon equation, Appl. Math. Comput., 363, 124576 (2019) · Zbl 1433.35348
[68] Zhang, B.; Zhu, W.; Xia, Y.; Bai, Y., A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Bswas-Milovic equation: via bifurcation theory of dynamical system, Qual. Theor. Dynam. Syst., 19, 11 (2020) · Zbl 1450.34008
[69] Zheng, L. X.; Yong, L. X.; Ying, Z. L.; Liang, Z. J., Exact solutions of Gerdjikov-Ivanov equation, Acta Phys. Sin., 51, 2031-2034 (2008) · Zbl 1174.35477
[70] Zhou, Y.; Liu, Q.; Zhang, J.; Zhang, W., Exact solution for (2+1)-dimension nonlinear dispersive long wave equation, Appl. Math. Comput., 177, 2, 495-499 (2006) · Zbl 1256.35126
[71] Zhou, Q.; Zhu, Q.; Yu, H.; Liu, Y.; Wei, C.; Yao, P.; Bhrawy, A. H.; Biswas, A., Bright, dark and singular optical solitons in a cascaded system, Laser Phys., 25, 025402 (2015)
[72] Zhu, W.; Xia, Y.; Zhang, B.; Bai, Y., Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, Int. J. Bifur. Chaos, 29, 3, 1950041 (2019) · Zbl 1411.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.