×

Solution of generalized fractional kinetic equations with generalized Mathieu series. (English) Zbl 1540.34146

Summary: We develop a new generalized form of the fractional kinetic equation involving the generalized Mathieu series. By using the Sumudu transform, a solution of these generalized fractional kinetic equation is obtained in terms of the Mittag-Leffler function. The numerical results and graphical interpretation are also presented.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K06 Linear functional-differential equations
44A15 Special integral transforms (Legendre, Hilbert, etc.)
33E12 Mittag-Leffler functions and generalizations
Full Text: DOI

References:

[1] P. Agarwal, M. Chand and G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Eng. J. 55 (2016), no. 4, 3053-3059.
[2] P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand and G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria Eng. J. 57 (2018), no. 3, 1937-1942.
[3] M. A. Asiru, Sumudu transform and the solution of integral equations of convolution type, Internat. J. Math. Ed. Sci. Tech. 32 (2001), no. 6, 906-910. · Zbl 1008.45003
[4] F. B. M. Belgacem and A. Karaballi, Sumudu transform fundamental properties investigations and applications, J. Appl. Math. Stoch. Anal. (2006), Article ID 91083. · Zbl 1115.44001
[5] F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng. (2003), no. 3-4, 103-118. · Zbl 1068.44001
[6] P. Cerone and C. T. Lenard, On integral forms of generalised Mathieu series, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 5, Article ID 100. · Zbl 1072.26011
[7] M. Chand, P. Agarwal, S. Jain, G. Wang and K. S. Nisar, Image formulas and graphical interpretation of fractional derivatives of R-function and G-function, Advanced Stud. Contemp. Math. 26 (2016), no. 4, 633-652. · Zbl 1364.26009
[8] V. B. L. Chaurasia and S. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci. 317 (2008), 213-219.
[9] V. B. L. Chaurasia and J. Singh, Application of Sumudu transform in Schödinger equation occurring in quantum mechanics, Appl. Math. Sci. (Ruse) 4 (2010), no. 57-60, 2843-2850. · Zbl 1218.33005
[10] J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Bound. Value Probl. 2013 (2013), Paper No. 95. · Zbl 1293.33003
[11] J. Choi and D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun. 20 (2015), no. 1, 113-123. · Zbl 1333.26005
[12] A. Chouhan, S. D. Purohit and S. Saraswat, An alternative method for solving generalized differential equations of fractional order, Kragujevac J. Math. 37 (2013), no. 2, 299-306. · Zbl 1299.26011
[13] A. Chouhan and S. Sarswat, On solution of generalized kinetic equation of fractional order, Int. J. Math. Sci. Appl. 2 (2012), no. 2, 813-818.
[14] P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann. 250 (1980), no. 2, 95-98. · Zbl 0419.26008
[15] O. Emersleben, Über die Reihe \sum^{\infty}_{k=1}k/{(k^2+c^2)^2}.(Bemerkung zu einer Arbeit von Herrn K. Schröder.), Math. Ann. 125 (1952), 165-171. · Zbl 0049.32204
[16] V. G. Gupta, B. Sharma and F. B. M. Belgacem, On the solutions of generalized fractional kinetic equations, Appl. Math. Sci. (Ruse) 5 (2011), no. 17-20, 899-910. · Zbl 1231.34008
[17] H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci. 327 (2000), 53-63. · Zbl 1034.82048
[18] E. L. Mathieu, Traitéde Physique Mathématique, VI-VII: Théorie de L’élasticité des Corps Solides, Gauthier-Villars, Paris, 1890. · JFM 22.0996.03
[19] G. V. Milovanović and T. K. Pogány, New integral forms of generalized Mathieu series and related applications, Appl. Anal. Discrete Math. 7 (2013), no. 1, 180-192. · Zbl 1299.33009
[20] G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math. 29 (1905), no. 1, 101-181. · JFM 36.0469.02
[21] T. K. Pogány, H. M. Srivastava and Ž. Tomovski, Some families of Mathieu \(\mathbf{a} \)-series and alternating Mathieu \(\mathbf{a} \)-series, Appl. Math. Comput. 173 (2006), no. 1, 69-108. · Zbl 1097.33016
[22] A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos 7 (1997), no. 4, 753-764. · Zbl 0933.37029
[23] R. K. Saxena and S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput. 199 (2008), no. 2, 504-511. · Zbl 1166.76051
[24] R. K. Saxena, A. M. Mathai and H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci. 282 (2002), 281-287.
[25] R. K. Saxena, A. M. Mathai and H. J. Haubold, On generalized fractional kinetic equations, Phys. A 344 (2004), no. 3-4, 657-664.
[26] R. K. Saxena, A. M. Mathai and H. J. Haubold, Solution of generalized fractional reaction-diffusion equations, Astrophys. Space Sci. 305 (2006), 305-313. · Zbl 1105.35309
[27] H. M. Srivastava and Ž. Tomovski, Some problems and solutions involving Mathieu’s series and its generalizations, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article ID 45. · Zbl 1068.33032
[28] Ž. Tomovski, New double inequalities for Mathieu type series, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 15 (2004), 80-84. · Zbl 1265.33040
[29] Ž. Tomovski and K. Mehrez, Some families of generalized Mathieu-type power series, associated probability distributions and related inequalities involving complete monotonicity and log-convexity, Math. Inequal. Appl. 20 (2017), no. 4, 973-986. · Zbl 1386.33002
[30] Ž. Tomovski and K. Trenčevski, On an open problem of Bai-Ni Guo and Feng Qi, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 2, Article ID 29. · Zbl 1095.26015
[31] G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech. 24 (1993), no. 1, 35-43. · Zbl 0768.44003
[32] G. K. Watugala, The Sumudu transform for functions of two variables, Math. Engrg. Indust. 8 (2002), no. 4, 293-302. · Zbl 1025.44003
[33] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Phys. D 76 (1994), no. 1-3, 110-122. · Zbl 1194.37163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.