×

Solution of generalized fractional reaction-diffusion equations. (English) Zbl 1105.35309

Summary: This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the \(H\)-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.

MSC:

35C05 Solutions to PDEs in closed form
35K57 Reaction-diffusion equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs
26A33 Fractional derivatives and integrals

References:

[1] Brychkov, Yu.A., Prudnikov, A.P.: Integral transforms of generalized functions. Gordon and Breach, New York (1989) · Zbl 0729.46016
[2] Caputo, M.: Elasticita e dissipazione. Zanichelli, Bologna (1969)
[3] Compte, A.: Stochastic foundations of fractional dynamics. Phys. Rev. E 53, 4191–4193 (1996) · doi:10.1103/PhysRevE.53.4191
[4] Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front dynamics in reaction-diffusion systems with Lévy flights: A fractional diffusion approach. arXiv:nlin.PS/0212039 v2 (2003)
[5] Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front propagation and segregation in a reaction-diffusion model with cross-diffusion. Physica D 168–169, 45–60 (2002) · Zbl 1022.35017 · doi:10.1016/S0167-2789(02)00494-3
[6] Dzherbashyan, M.M.: Integral transforms and representation of functions in complex domain (in Russian). Nauka, Moscow (1966)
[7] Dzherbashyan, M.M.: Harmonic analysis and boundary value problems in the complex domain. Birkhäuser-Verlag, Basel, London (1993)
[8] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions, vol. 1. McGraw-Hill, New York, Toronto, and London (1953) · Zbl 0052.29502
[9] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, vol. 1. McGraw-Hill, New York, Toronto, and London (1954a) · Zbl 0055.36401
[10] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, vol. 2. McGraw-Hill, New York, Toronto, and London (1954b) · Zbl 0055.36401
[11] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions, vol. 3. McGraw-Hill, New York, Toronto, and London (1955) · Zbl 0064.06302
[12] Frank, T.D.: Nonlinear Fokker-Planck equations: fundamentals and applications. Springer-Verlag, Berlin-Heidelberg (2005) · Zbl 1071.82001
[13] Gelfand I.M., Shilov, G.F.: Generalized functions, vol. 1. Academic Press, London (1964)
[14] Haken, H.: Synergetics: introduction and advanced topics. Springer-Verlag, Berlin-Heidelberg (2004)
[15] Haubold, H.J., Mathai, A.M.: A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth. Astrophys. Space Sci. 228, 113–134 (1995) · doi:10.1007/BF00984971
[16] Haubold, H.J., Mathai, A.M.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 273, 53–63 (2000) · Zbl 1034.82048 · doi:10.1023/A:1002695807970
[17] Henry, B.I., Wearne, S.L.: Fractional reaction-diffusion. Physica A 276, 448–455 (2000) · doi:10.1016/S0378-4371(99)00469-0
[18] Henry, B.I., Wearne, S.L.: Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, 870–887 (2002) · Zbl 1103.35047 · doi:10.1137/S0036139900375227
[19] Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E 72, 026101 (2005) · doi:10.1103/PhysRevE.72.026101
[20] Jespersen, S., Metzler, R., Fogedby, H.C.: Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736–2745 (1999) · doi:10.1103/PhysRevE.59.2736
[21] Kilbas, A.A., Pierantozzi, T., Trujillo, J.J., Vazquez, L.: On generalized fractional evolution-diffusion equation. in press (2005) · Zbl 1059.35030
[22] Kilbas, A.A., Saigo, M.: H-Transforms: Theory and applications. Chapman and Hall/CRC, New York (2004) · Zbl 1056.44001
[23] Mathai, A.M., Saxena, R.K.: The H-function with applications in statistics and other disciplines. Halsted Press [John Wiley & Sons], New York, London and Sydney (1978) · Zbl 0382.33001
[24] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339, 1–77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[25] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[26] Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, New York (1993) · Zbl 0789.26002
[27] Mittag-Leffler, M.G.: Sur la nouvelle fonction E{\(\alpha\)}(x), Comptes Rendus Acad. Sci. Paris (Ser. II) 137, 554–558 (1903)
[28] Mittag-Leffler, M.G.: Sur la representation analytique d’une fonction branche uniforme d’une fonction Monogene, Acta Math. 29, 101–181 (1905) · JFM 36.0469.02 · doi:10.1007/BF02403200
[29] Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. John Wiley & Sons, New York (1977) · Zbl 0363.93005
[30] Oldham, K.B., Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. Academic Press, New York (1974) · Zbl 0292.26011
[31] Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[32] Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and series, vol. 3. More Special Functions, Gordon and Breach, New York (1989) · Zbl 0728.26001
[33] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, New York (1990) · Zbl 0818.26003
[34] Saxena, R.K., Mathai, A.M., Haubold, H.J.: On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002) · doi:10.1023/A:1021175108964
[35] Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A 344, 657–664 (2004a) · doi:10.1016/j.physa.2004.06.048
[36] Saxena, R.K., Mathai, A.M., Haubold, H.J.: Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290, 299–310 (2004b) · doi:10.1023/B:ASTR.0000032531.46639.a7
[37] Saxena, R.K., Mathai, A.M., Haubold, H.J.: Astrophysical thermonuclear functions for Boltzmann-Gibbs statistics and Tsallis statistics. Physica A 344, 649–656 (2004c) · doi:10.1016/j.physa.2004.06.047
[38] Saxena, R.K., Mathai, A.M., Haubold, H.J.: Fractional reactiondiffusion equations. Astrophys. Space Sci. 305(1), DOI 10.1007/s10509-006-9189-6 (2006) · Zbl 1105.35307
[39] Wilhelmsson, H., Lazzaro, E.: Reaction-diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Bristol and Philadelphia (2001)
[40] Wiman, A.: Ueber den Fundamentalsatz in der Theorie der Funktionen E{\(\alpha\)}(x), Acta Mathematica 29, 191–201 (1905) · JFM 36.0471.01 · doi:10.1007/BF02403202
[41] Wright, E.M.: On the coefficients of power series having exponential singularities, J. Lond. Math. Soc. 8, 71–79 (1933) · Zbl 0006.19704 · doi:10.1112/jlms/s1-8.1.71
[42] Wright, E.M.: The asymptotic expansion of the generalized hypergeo- metric functions, J. Lond. Math. Soc. 10, 386–293 (1935) · Zbl 0012.19604 · doi:10.1112/jlms/s1-10.1.94
[43] Wright, E.M.: The asymptotic expansion of the generalized hypergeo- metric functions, Proc. Lond. Math. Soc. 46, 389–408 (1940) · Zbl 0025.40402 · doi:10.1112/plms/s2-46.1.389
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.