×

Multiclusters in networks of adaptively coupled phase oscillators. (English) Zbl 1540.34101

Summary: Dynamical systems on networks with adaptive couplings appear naturally in real-world systems such as power grid networks, social networks, and neuronal networks. We investigate a paradigmatic system of adaptively coupled phase oscillators inspired by neuronal networks with synaptic plasticity. One important behavior of such systems reveals splitting of the network into clusters of oscillators with the same frequencies, where different clusters correspond to different frequencies. Starting from one-cluster solutions we provide existence criteria for multicluster solutions and present their explicit form. The phases of the oscillators within one cluster can be organized in different patterns: antipodal, double antipodal, and splay type. Interestingly, multiclusters are shown to exist where different clusters exhibit different patterns. For instance, an antipodal cluster can coexist with a splay cluster. We also provide stability conditions for one- and multicluster solutions. These conditions, in particular, reveal a high level of multistability.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
37F99 Dynamical systems over complex numbers
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

References:

[1] L. F. Abbott and S. Nelson, Synaptic plasticity: Taming the beast, Nat. Neurosci., 3 (2000), pp. 1178-1183.
[2] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Springer, New York, 1988. · Zbl 0875.58002
[3] D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett., 93 (2004), 174102, https://doi.org/10.1103/physrevlett.93.174102. · Zbl 1101.37319
[4] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77 (2005), pp. 137-185.
[5] T. Aoki, Self-organization of a recurrent network under ongoing synaptic plasticity, Neural Netw., 62 (2015), pp. 11-19, https://doi.org/10.1016/j.neunet.2014.05.024. · Zbl 1368.92013
[6] T. Aoki and T. Aoyagi, Co-evolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102 (2009), 034101, https://doi.org/10.1103/physrevlett.102.034101.
[7] T. Aoki and T. Aoyagi, Self-organized network of phase oscillators coupled by activity-dependent interactions, Phys. Rev. E, 84 (2011), 066109, https://doi.org/10.1103/physreve.84.066109.
[8] P. Ashwin, C. Bick, and O. Burylko, Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling, Front. Appl. Math. Stat., 2 (2016), https://doi.org/10.3389/fams.2016.00007.
[9] P. Ashwin, O. Burylko, and Y. Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators, Phys. D, 237 (2008), https://doi.org/10.1016/j.physd.2007.09.015. · Zbl 1178.34041
[10] V. Avalos-Gaytán, J. A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, and S. Boccaletti, Emergent explosive synchronization in adaptive complex networks, Phys. Rev. E, 97 (2018), 042301, https://doi.org/10.1103/physreve.97.042301.
[11] K. Blaha, J. Lehnert, A. Keane, T. Dahms, P. Hövel, E. Schöll, and J. L. Hudson, Clustering in delay-coupled smooth and relaxational chemical oscillators, Phys. Rev. E, 88 (2013), 062915, https://doi.org/10.1103/physreve.88.062915.
[12] B. Blasius, A. Huppert, and L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399 (1999), pp. 354-359.
[13] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004. · Zbl 1058.90049
[14] O. Burylko and A. Pikovsky, Desynchronization transitions in nonlinearly coupled phase oscillators, Phys. D, 240 (2011), https://doi.org/10.1016/j.physd.2011.05.016. · Zbl 1235.34111
[15] N. Caporale and Y. Dan, Spike timing-dependent plasticity: A Hebbian learning rule, Annu. Rev. Neurosci., 31 (2008), pp. 25-46, https://doi.org/10.1146/annurev.neuro.31.060407.125639.
[16] C. U. Choe, T. Dahms, P. Hövel, and E. Schöll, Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states, Phys. Rev. E, 81 (2010), 025205(R), https://doi.org/10.1103/physreve.81.025205.
[17] T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202, https://doi.org/10.1103/physreve.86.016202.
[18] T. Gross and B. Blasius, Adaptive coevolutionary networks: A review, J. R. Soc. Interface, 5 (2008), pp. 259-271, https://doi.org/10.1098/rsif.2007.1229.
[19] A. Gushchin, E. Mallada, and A. Tang, Synchronization of phase-coupled oscillators with plastic coupling strength, in Proceedings of the Information Theory and Applications Workshop, 2015, pp. 291-300, https://doi.org/10.1109/ita.2015.7309003.
[20] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nature Phys., 8 (2012), pp. 658-661, https://doi.org/10.1038/nphys2372.
[21] C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson’s disease: Networks, models and treatments, Trends Neurosci., 30 (2007), pp. 357-364.
[22] D. Hebb, The Organization of Behavior: A Neuropsychological Theory, Wiley, New York, 1949.
[23] F. C. Hoppensteadt and E. M. Izhikevich, Synaptic organizations and dynamical properties of weakly connected neural oscillators II. Learning phase information, Biol. Cybernet., 75 (1996), pp. 129 –135, https://doi.org/10.1007/s004220050280. · Zbl 0882.92007
[24] S. Jain and S. Krishna, A model for the emergence of cooperation, interdependence, and structure in evolving networks, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 543-547, https://doi.org/10.1073/pnas.98.2.543.
[25] D. V. Kasatkin and V. I. Nekorkin, Dynamics of the phase oscillators with plastic couplings, Radiophys. Quantum Electron., 58 (2016), pp. 877-891, https://doi.org/10.1007/s11141-016-9662-1.
[26] D. V. Kasatkin, S. Yanchuk, E. Schöll, and V. I. Nekorkin, Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings, Phys. Rev. E, 96 (2017), 062211, https://doi.org/10.1103/physreve.96.062211.
[27] P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, RI, 2011. · Zbl 1244.37001
[28] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, New York, 1984. · Zbl 0558.76051
[29] Y. Kuramoto and D. Battogtokh, Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlinear Phen. Complex Sys., 5 (2002), pp. 380-385.
[30] J. Lehnert, P. Hövel, A. A. Selivanov, A. L. Fradkov, and E. Schöll, Controlling cluster synchronization by adapting the topology, Phys. Rev. E, 90 (2014), 042914, https://doi.org/10.1103/physreve.90.042914.
[31] L. Lücken, O. Popovych, P. Tass, and S. Yanchuk, Noise-enhanced coupling between two oscillators with long-term plasticity, Phys. Rev. E, 93 (2016), 032210.
[32] L. Lücken and S. Yanchuk, Two-cluster bifurcations in systems of globally pulse-coupled oscillators, Phys. D, 241 (2012), pp. 350-359, https://doi.org/10.1016/j.physd.2011.10.017. · Zbl 1252.34042
[33] Y. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, and P. A. Tass, Multistability in the Kuramoto model with synaptic plasticity, Phys. Rev. E, 75 (2007), 066207, https://doi.org/10.1103/physreve.75.066207.
[34] H. Markram, J. Lübke, and B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPS, Science, 275 (1997), pp. 213-215, https://doi.org/10.1126/science.275.5297.213.
[35] V. I. Nekorkin and D. V. Kasatkin, Dynamics of a network of phase oscillators with plastic couplings, AIP Conf. Proc., 1738 (2016), 210010, https://doi.org/10.1063/1.4951993.
[36] I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106 (2011), 234102, https://doi.org/10.1103/physrevlett.106.234102.
[37] O. E. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model, Phys. Rev. Lett., 109 (2012), 164101, https://doi.org/10.1103/physrevlett.109.164101.
[38] P. Perlikowski, S. Yanchuk, O. Popovych, and P. Tass, Periodic patterns in a ring of delay-coupled oscillators, Phys. Rev. E, 82 (2010), 036208, https://doi.org/10.1103/physreve.82.036208.
[39] C. B. Picallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states, Phys. Rev. E, 83 (2011), 036206, https://doi.org/10.1103/physreve.83.036206.
[40] A. Pikovsky and M. G. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett., 101 (2008), 264103, https://doi.org/10.1103/physrevlett.101.264103. · Zbl 1153.37403
[41] A. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. · Zbl 0993.37002
[42] O. Popovych, S. Yanchuk, and P. Tass, Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity, Sci. Rep., 3 (2013), 2926.
[43] O. V. Popovych, M. N. Xenakis, and P. A. Tass, The spacing principle for unlearning abnormal neuronal synchrony, PLOS ONE, 10 (2015), https://doi.org/10.1371/journal.pone.0117205.
[44] C. Pötzsche and M. Rasmussen, Taylor approximation of integral manifolds, J. Dynam. Differential Equations, 18 (2006), pp. 427-460, https://doi.org/10.1007/s10884-006-9011-8. · Zbl 1106.34029
[45] Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Phys. Rev. E, 76 (2007), 016207, https://doi.org/10.1103/physreve.76.016207.
[46] H. Sakaguchi and Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment, Prog. Theor. Phys, 76 (1986), pp. 576-581.
[47] P. Seliger, S. C. Young, and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Phys. Rev. E, 65 (2002), 041906, https://doi.org/10.1103/physreve.65.041906. · Zbl 1244.34078
[48] M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Rev. Modern Phys., 85 (2013), pp. 421-470.
[49] S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), pp. 1-20. · Zbl 0983.34022
[50] L. Timms and L. Q. English, Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity, Phys. Rev. E, 89 (2014), 032906, https://doi.org/10.1103/physreve.89.032906.
[51] M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase cluster states in populations of coupled chemical oscillators, Nat. Phys., 8 (2012), pp. 662-665, https://doi.org/10.1038/nphys2371.
[52] V. K. Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein, Oscillatory cluster patterns in a homogeneous chemical system with global feedback, Nature, 406 (2000), pp. 389-391, https://doi.org/10.1038/35019038 10.1038/35019038.
[53] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, New York, 2006. · Zbl 1148.35006
[54] D. A. Wiley, S. H. Strogatz, and M. Girvan, The size of the sync basin, Chaos, 16 (2006), 015103, https://doi.org/10.1063/1.2165594. · Zbl 1144.37417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.