×

On the derivatives of Hardy’s function \(Z(t)\). (English) Zbl 1540.11114

In this paper under review, the authors study the sign of \(Z^{(k)}(t)Z^{(l)}(t)\) and \(Z^{(k)}(t)Z^{(l)}(t)Z^{(m)}(t)Z^{(n)}(t)\), where \(Z^{(k)}(t)\) is the \(k\)th derivative of the Hardy function defined by \[ Z(t):=e^{i\theta(t)}Z\left(\frac{1}{2}+it\right)=\left(\pi^{-it}\frac{\Gamma\left(\frac{1}{4}+\frac{it}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{it}{2}\right)}\right)^{1/2}\zeta\left(\frac{1}{2}+it\right) \] and \(\zeta\) denotes the Riemann zeta function. For instance, in Theorem 1, they prove for \(k=0\) and \(l=2\) that \[ \mathrm{meas}\left\{t\in{[T,2T]}: Z(t)Z''(T)<0\right\}\geq\left(\frac{3}{25}+o(1)\right)T. \] In Theorem 2, similar result is proved in the case when \(k+l\) is even and \(k\equiv l+2\pmod 4\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses

References:

[1] S.Baluyot, On the zeros of Riemann’s zeta���function on the critical line, J. Number Theory165 (2016), 203-269. · Zbl 1401.11120
[2] S.Bettin, H. M.Bui, X.Li, and M.Radziwiłł, A quadratic divisor problem and moments of the Riemann zeta‐function, J. Eur. Math. Soc.22 (2020), 3953-3980. · Zbl 1471.11231
[3] H. M.Bui, Critical zeros of the Riemann zeta‐function, arXiv:1410.2433. · Zbl 1269.11078
[4] H. M.Bui, J. B.Conrey, and M. P.Young, More than \(41\%\) of the zeros of the zeta function are on the critical line, Acta Arith.150 (2011), 35-64. · Zbl 1250.11083
[5] H. M.Bui and M. B.Milinovich, Gaps between zeros of the Riemann zeta‐function, Q. J. Math.69 (2018), 403-423. · Zbl 1447.11094
[6] J. B.Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. Reine Angew. Math.399 (1989), 1-26. · Zbl 0668.10044
[7] J. B.Conrey and N. C.Snaith, Applications of the \(L\)‐functions ratios conjectures, Proc. Lond. Math. Soc.94 (2007), 594-646. · Zbl 1183.11050
[8] D. W.Farmer and R. C.Rhoades, Differentiation evens out zero spacings, Trans. Amer. Math. Soc.357 (2005), 3789-3811. · Zbl 1069.30005
[9] S. M.Gonek and A.Ivić, On the distribution of positive and negative values of Hardy’s \(Z\)‐function, J. Number Theory174 (2017), 189-201. · Zbl 1355.11085
[10] J.Gunns and C. P.Hughes, The effect of repeated differentiation on \(L\)‐functions, J. Number Theory194 (2019), 30-43. · Zbl 1434.11189
[11] R. R.Hall, The behaviour of the Riemann zeta‐function on the critical line, Mathematika46 (1999), 281-313. · Zbl 1134.11337
[12] R. R.Hall, Some four dimensional definite integrals arising from zeta‐function theory, Comput. Methods Funct. Theory12 (2012), 565-583. · Zbl 1302.11058
[13] H.Ki, The Riemann \(\Xi \)‐function under repeated differentiation, J. Number Theory120 (2006), 120-131. · Zbl 1217.11075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.