×

A note on the zeros of the derivatives of Hardy’s function \(Z(t)\). (English) Zbl 07738291

Let \(Z(t)\) be the Hardy function defined by \[ Z(t)=\left( \pi^{-it}\frac{\Gamma(\frac{1}{4}+\frac{it}{2})}{\Gamma(\frac{1}{4}-\frac{it}{2})}\right)^\frac{1}{2}\zeta\left(\frac{1}{2}+it\right), \] where \(\zeta(s)\) is the Riemann zeta function. Let \[ \Lambda^{(k)}=\lim\sup_{n \to \infty } \frac{t_{n+1}^{(k)}-t_{n}^{(k)}}{2\pi/\log t_n^{(k)}}, \] where \(\{t_n^{(k)}\}_{n\in \mathbb{N}}\) denotes the non-decreasing sequence of non-negative zeros of the \(k\)th derivative of \(Z(t)\).
In this paper under review, the authors prove the following main result \[ \Lambda^{(1)}>1.9. \] The above estimate is an improvement of a previous conditional result of J. B. Conrey and A. Ghosh [J. Lond. Math. Soc., II. Ser. 32, 193–202 (1985; Zbl 0582.10028)] and the second author’s unconditional estimate [R. R. Hall, Acta Arith. 111, No. 2, 125–140 (2004; Zbl 1153.11324)].
Assuming the Riemann hypothesis, the authors prove that there exist infinitely many zeros of \(Z(t)\) whose distances to the set of zeros of \(Z^{(2k)}(t)\) are small. As consequence, it is shown that for \(1\leq k\leq 3\) and any \(C > \log 4\), there are \[ \gg T \exp\left(-C\frac{\log T}{\log \log T} \right) \] ordinates \(t_n\in[T, 2T]\) whose distances to the set of zeros of \(Z^{(2k)}(t)\) are \(<\frac{2\pi}{\log T}\mu_k\) where \[ \mu_1=0.2 \qquad \mu_2=0.22 \qquad \mu_3=0.23. \]

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses

References:

[1] S.Bettin, H. M.Bui, X.Li, and M.Radziwiłł, A quadratic divisor problem and moments of the Riemann zeta‐function, J. Eur. Math. Soc.22 (2020), 3953-3980. · Zbl 1471.11231
[2] H. M.Bui, D. A.Goldston, M. B.Milinovich, and H. L.Montgomery, Small gaps and small spacings between zeta zeros, to appear in Acta Arith., https://doi.org/10.4064/aa220731-15-2. · Zbl 07771569 · doi:10.4064/aa220731-15-2
[3] H. M.Bui and R. R.Hall, On the derivatives of Hardy’s function \(Z(t)\), to appear in Bull. London Math. Soc., https://doi.org/10.1112/blms.12859. · Zbl 1540.11114 · doi:10.1112/blms.12859
[4] H. M.Bui and D. R.Heath‐Brown, On simple zeros of the Riemann zeta‐function, Bull. Lond. Math. Soc.45 (2013), 953-961. · Zbl 1291.11118
[5] H. M.Bui and M. B.Milinovich, Gaps between zeros of the Riemann zeta‐function, Q. J. Math.69 (2018), 403-423. · Zbl 1447.11094
[6] E.Carneiro and V.Chandee, Bounding \(\zeta (s)\) in the critical strip, J. Number Theory131 (2011), 363-384. · Zbl 1231.11097
[7] V.Chandee and K.Soundararajan, Bounding \(\vert \zeta (\frac{1}{2}+it)\vert\) on the Riemann hypothesis, Bull. Lond. Math. Soc.43 (2011), 243-250. · Zbl 1238.11078
[8] J. B.Conrey and A.Ghosh, A mean value theorem for the Riemann zeta‐function at its relative extrema on the critical line, J. Lond. Math. Soc.32 (1985), 193-202. · Zbl 0582.10028
[9] J. B.Conrey, A.Ghosh, and S. M.Gonek, Simple zeros of the Riemann zeta function, Proc. Lond. Math. Soc.76 (1998), 497-522. · Zbl 0907.11025
[10] J. B.Conrey, A.Ghosh, and S. M.Gonek, Mean values of the Riemann zeta‐function with application to the distribution of zeros, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 185-199. · Zbl 0671.10035
[11] R. R.Hall, A new unconditional result about large spaces between zeta zeros, Mathematika52 (2005), 101-113. · Zbl 1119.11050
[12] R. R.Hall, On the stationary points of Hardy’s function \(Z(t)\), Acta Arith.111 (2004), 125-140. · Zbl 1153.11324
[13] R. R.Hall, A Wirtinger type inequality and the spacing of the zeros of the Riemann zeta‐function, J. Number Theory93 (2002), 235-245. · Zbl 0994.11030
[14] R. R.Hall, The behaviour of the Riemann zeta‐function on the critical line, Mathematika46 (1999), 281-313. · Zbl 1134.11337
[15] G. H.Hardy, J. E.Littlewood, and G.Pólya, Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952. · Zbl 0047.05302
[16] W.Heap, J.Li, and J.Zhao, Lower bounds for discrete negative moments of the Riemann zeta function, Algebra Number Theory16 (2022), 1589-1625. · Zbl 1505.11112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.