×

Dynamical phase transition in the activity-biased fully-connected random field Ising model: connection with glass-forming systems. (English) Zbl 1539.82217

Summary: We analyse biased ensembles of trajectories for the random-field Ising model on a fully-connected lattice, which is described exactly by mean-field theory. By coupling the activity of the system to a dynamical biasing field, we find a range of dynamical phase transitions, including spontaneous symmetry breaking into ordered states. For weak bias, the phase behaviour is controlled by extrema of the free energy, which may be local minima or saddle points. For large bias, the system tends to states of extremal activity, which may differ strongly from free energy minima. We discuss connections of these results to random first-order transition theory of glasses, which motivates an extension of the analysis to random-field Ising models where the dynamical activity is not symmetric under magnetisation reversal.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics

References:

[1] Biroli, G.; Cammarota, C.; Tarjus, G.; Tarzia, M., Random-field-like criticality in glass-forming liquids, Phys. Rev. Lett., 112 (2014) · doi:10.1103/physrevlett.112.175701
[2] Biroli, G.; Cammarota, C.; Tarjus, G.; Tarzia, M., Random-field Ising-like effective theory of the glass transition: I. Mean-field models, Phys. Rev. B, 98 (2018) · doi:10.1103/physrevb.98.174205
[3] Biroli, G.; Cammarota, C.; Tarjus, G.; Tarzia, M., Random field Ising-like effective theory of the glass transition: II. Finite-dimensional models, Phys. Rev. B, 98 (2018) · doi:10.1103/physrevb.98.174206
[4] Franz, S.; Parisi, G.; Ricci-Tersenghi, F., Glassy critical points and the random field Ising model, J. Stat. Mech. (2013) · Zbl 1456.82357 · doi:10.1088/1742-5468/2013/02/l02001
[5] Franz, S.; Parisi, G., Universality classes of critical points in constrained glasses, J. Stat. Mech. (2013) · Zbl 1456.82910 · doi:10.1088/1742-5468/2013/11/p11012
[6] Berthier, L.; Biroli, G., Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., 83, 587 (2011) · doi:10.1103/revmodphys.83.587
[7] Arceri, F.; Landes, F. P.; Berthier, L.; Biroli, G., Glasses and aging: a statistical mechanics perspective (2020)
[8] Biroli, G.; Garrahan, J. P., Perspective: the glass transition, J. Chem. Phys., 138 (2013) · doi:10.1063/1.4795539
[9] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[10] Franz, S.; Parisi, G., Phase diagram of coupled glassy systems: a mean-field study, Phys. Rev. Lett., 79, 2486-2489 (1997) · doi:10.1103/physrevlett.79.2486
[11] Chandler, D.; Garrahan, J. P., Dynamics on the way to forming glass: bubbles in space-time, Annu. Rev. Phys. Chem., 61, 191-217 (2010) · doi:10.1146/annurev.physchem.040808.090405
[12] Garrahan, J. P.; Jack, R. L.; Lecomte, V.; Pitard, E.; van Duijvendijk, K.; van Wijland, F., Dynamical first-order phase transition in kinetically constrained models of glasses, Phys. Rev. Lett., 98 (2007) · doi:10.1103/physrevlett.98.195702
[13] Garrahan, J. P.; Jack, R. L.; Lecomte, V.; Pitard, E.; van Duijvendijk, K.; van Wijland, F., First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1157.82014 · doi:10.1088/1751-8113/42/7/075007
[14] Hedges, L. O.; Jack, R. L.; Garrahan, J. P.; Chandler, D., Dynamic order-disorder in atomistic models of structural glass formers, Science, 323, 1309-1313 (2009) · doi:10.1126/science.1166665
[15] Bodineau, T.; Lecomte, V.; Toninelli, C., Finite size scaling of the dynamical free energy in a kinetically constrained model, J. Stat. Phys., 147, 1-17 (2012) · Zbl 1245.82049 · doi:10.1007/s10955-012-0458-1
[16] Nemoto, T.; Lecomte, V.; Sasa, S-i; van Wijland, F., Finite-size effects in a mean-field kinetically constrained model: dynamical glassiness and quantum criticality, J. Stat. Mech. (2014) · Zbl 1456.82378 · doi:10.1088/1742-5468/2014/10/p10001
[17] Jack, R. L.; Garrahan, J. P., Metastable states and space-time phase transitions in a spin-glass model, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.011111
[18] Van Duijvendijk, K.; Jack, R. L.; Van Wijland, F., Second-order dynamic transition in a p = 2 spin-glass model, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.011110
[19] Jack, R. L.; Garrahan, J. P., Phase transition for quenched coupled replicas in a plaquette spin model of glasses, Phys. Rev. Lett., 116 (2016) · doi:10.1103/physrevlett.116.055702
[20] Turner, R. M.; Jack, R. L.; Garrahan, J. P., Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics, Phys. Rev. E, 92 (2015) · doi:10.1103/physreve.92.022115
[21] Speck, T.; Malins, A.; Royall, C. P., First-order phase transition in a model glass former: coupling of local structure and dynamics, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.195703
[22] Pinchaipat, R.; Campo, M.; Turci, F.; Hallett, J. E.; Speck, T.; Patrick Royall, C., Experimental evidence for a structural-dynamical transition in trajectory space, Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.028004
[23] Abou, B.; Colin, R.; Lecomte, V.; Pitard, E.; van Wijland, F., Activity statistics in a colloidal glass former: experimental evidence for a dynamical transition, J. Chem. Phys., 148 (2018) · doi:10.1063/1.5006924
[24] Guioth, J.; Jack, R. L., Dynamical phase transitions for the activity biased Ising model in a magnetic field, J. Stat. Mech. (2020) · Zbl 1457.82224 · doi:10.1088/1742-5468/ab8c34
[25] Schneider, T.; Pytte, E., Random-field instability of the ferromagnetic state, Phys. Rev. B, 15, 1519 (1977) · doi:10.1103/physrevb.15.1519
[26] Luttinger, J. M., Exactly soluble spin-glass model, Phys. Rev. Lett., 37, 778 (1976) · doi:10.1103/physrevlett.37.778
[27] Aharony, A., Tricritical points in systems with random fields, Phys. Rev. B, 18, 3318 (1978) · doi:10.1103/physrevb.18.3318
[28] Kaiser, M.; Jack, R. L.; Zimmer, J., Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170, 1019-1050 (2018) · Zbl 1392.82038 · doi:10.1007/s10955-018-1986-0
[29] Maes, C.; Netočnỳ, K.; Wynants, B., On and beyond entropy production: the case of Markov jump processes, Markov Process. Relat. Fields, 14, 445-464 (2008) · Zbl 1156.82360
[30] Lecomte, V.; Appert-Rolland, C.; van Wijland, F., Thermodynamic formalism for systems with Markov dynamics, J. Stat. Phys., 127, 51-106 (2007) · Zbl 1145.82014 · doi:10.1007/s10955-006-9254-0
[31] Bernard, D., Non-equilibrium steady states: fluctuations and large deviations of the density and of the current, J. Stat. Mech. (2007) · Zbl 1456.82551 · doi:10.1088/1742-5468/2007/07/p07023
[32] Chetrite, R.; Touchette, H., Nonequilibrium Markov processes conditioned on large deviations, Ann. Henri Poincaré, 16, 2005-2057 (2015) · Zbl 1330.82039 · doi:10.1007/s00023-014-0375-8
[33] Jack, R. L., Ergodicity and large deviations in physical systems with stochastic dynamics, Eur. Phys. J. B, 93, 1-22 (2020) · Zbl 1516.82060 · doi:10.1140/epjb/e2020-100605-3
[34] Jack, R. L.; Nemoto, T.; Lecomte, V., Dynamical phase coexistence in the Fredrickson-Andersen model, J. Stat. Mech. (2020) · Zbl 1457.82299 · doi:10.1088/1742-5468/ab7af6
[35] Krapivsky, P. L.; Redner, S.; Ben-Naim, E., A Kinetic View of Statistical Physics (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1235.82040
[36] Jack, R. L.; Sollich, P., Large deviations and ensembles of trajectories in stochastic models, Prog. Theor. Phys. Suppl., 184, 304-317 (2010) · Zbl 1201.82008 · doi:10.1143/ptps.184.304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.