×

Immersed isogeometric analysis based on a hybrid collocation/finite cell method. (English) Zbl 1539.74521

Summary: We propose an immersed approach for the isogeometric collocation method, combined with the Galerkin-based finite cell method, to avoid the subdivision of complex geometries in too many patches.
The presented technology further develops the hybrid collocation concept to accommodate both numerical methods within a single framework, providing a systematic technique for selecting the method to be used.
We perform several numerical tests to demonstrate that the methodology guarantees the same convergence rates obtained using the standard isogeometric collocation method.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics

Software:

Nutils; CutFEM; ABAQUS
Full Text: DOI

References:

[1] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[3] Morganti, S.; Auricchio, F.; Benson, D.; Gambarin, F.; Hartmann, S.; Hughes, T.; Reali, A., Patient-specific isogeometric structural analysis of aortic valve closure, Comput. Methods Appl. Mech. Engrg., 284, 508-520 (2015) · Zbl 1423.92015
[4] Auricchio, F.; Da Veiga, L. B.; Hughes, T.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[5] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170-232 (2013) · Zbl 1286.65174
[6] Morganti, S.; Callari, C.; Auricchio, F.; Reali, A., Mixed isogeometric collocation methods for the simulation of poromechanics problems in 1D, Meccanica, 53, 6, 1441-1454 (2018) · Zbl 1391.76739
[7] Patton, A.; Dufour, J.-E.; Antolin, P.; Reali, A., Fast and accurate elastic analysis of laminated composite plates via isogeometric collocation and an equilibrium-based stress recovery approach, Compos. Struct., 225, Article 111026 pp. (2019)
[8] Patton, A.; Antolín, P.; Dufour, J.-E.; Kiendl, J.; Reali, A., Accurate equilibrium-based interlaminar stress recovery for isogeometric laminated composite Kirchhoff plates, Compos. Struct., 256, Article 112976 pp. (2021)
[9] Fedeli, P.; Frangi, A.; Auricchio, F.; Reali, A., Phase-field modeling for polarization evolution in ferroelectric materials via an isogeometric collocation method, Comput. Methods Appl. Mech. Engrg., 351, 789-807 (2019) · Zbl 1441.74013
[10] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Stable isogeometric analysis of trimmed geometries, Comput. Methods Appl. Mech. Engrg., 316, 497-521 (2017) · Zbl 1439.74487
[11] Düster, A.; Rank, E.; Szabó, B., The p-version of the finite element and finite cell methods, (Encyclopedia of Computational Mechanics (2017), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, UK), 1-35
[12] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Internat. J. Numer. Methods Engrg., 89, 9, 1171-1202 (2012) · Zbl 1242.74161
[13] Korshunova, N.; Alaimo, G.; Hosseini, S.; Carraturo, M.; Reali, A.; Niiranen, J.; Auricchio, F.; Rank, E.; Kollmannsberger, S., Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures, Addit. Manuf., 41, Article 101949 pp. (2021)
[14] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 4, 1055-1071 (2014) · Zbl 1311.74039
[15] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[16] Ruess, M.; Schillinger, D.; Özcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[17] Coradello, L.; Loli, G.; Buffa, A., A projected super-penalty method for the C 1-coupling of multi-patch isogeometric Kirchhoff plates, Comput. Mech., 67, 4, 1133-1153 (2021) · Zbl 1477.74113
[18] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249, 2-14 (2012) · Zbl 1348.74305
[19] Schillinger, D.; Borden, M. J.; Stolarski, H. K., Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583-610 (2015) · Zbl 1423.74848
[20] Kapl, M.; Vitrih, V., Isogeometric collocation on planar multi-patch domains, Comput. Methods Appl. Mech. Engrg., 360, Article 112684 pp. (2020) · Zbl 1441.65112
[21] Jia, Y.; Anitescu, C.; Zhang, Y. J.; Rabczuk, T., An adaptive isogeometric analysis collocation method with a recovery-based error estimator, Comput. Methods Appl. Mech. Engrg., 345, 52-74 (2019) · Zbl 1440.65248
[22] De Lorenzis, L.; Evans, J. A.; Hughes, T. J.; Reali, A., Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21-54 (2015) · Zbl 1423.74947
[23] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[24] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, K.-U., Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 284, 401-457 (2015) · Zbl 1425.65030
[25] Wei, X.; Marussig, B.; Antolin, P.; Buffa, A., Immersed boundary-conformal isogeometric method for linear elliptic problems, Comput. Mech., 68, 6, 1385-1405 (2021) · Zbl 1479.74130
[26] Wassermann, B.; Kollmannsberger, S.; Yin, S.; Kudela, L.; Rank, E., Integrating CAD and numerical analysis: ‘Dirty geometry’ handling using the Finite Cell Method, Comput. Methods Appl. Mech. Engrg., 351, 808-835 (2019) · Zbl 1441.65024
[27] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A., Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249-252, 104-115 (2012), Higher Order Finite Element and Isogeometric Methods · Zbl 1348.74340
[28] Korshunova, N.; Alaimo, G.; Hosseini, S.; Carraturo, M.; Reali, A.; Niiranen, J.; Auricchio, F.; Rank, E.; Kollmannsberger, S., Bending behavior of octet-truss lattice structures: Modelling options, numerical characterization and experimental validation, Mater. Des., 205, Article 109693 pp. (2021)
[29] Ruess, M.; Tal, D.; Trabelsi, N.; Yosibash, Z.; Rank, E., The finite cell method for bone simulations: verification and validation, Biomech. Model. Mechanobiol., 11, 3, 425-437 (2012)
[30] Heinze, S.; Joulaian, M.; Düster, A., Numerical homogenization of hybrid metal foams using the finite cell method, Comput. Math. Appl., 70, 7, 1501-1517 (2015) · Zbl 1443.74251
[31] Demko, S., On the existence of interpolating projections onto spline spaces, J. Approx. Theory, 43, 2, 151-156 (1985) · Zbl 0561.41029
[32] Kruse, R.; Nguyen-Thanh, N.; De Lorenzis, L.; Hughes, T., Isogeometric collocation for large deformation elasticity and frictional contact problems, Comput. Methods Appl. Mech. Engrg., 296, 73-112 (2015) · Zbl 1423.74649
[33] Fahrendorf, F.; Morganti, S.; Reali, A.; Hughes, T. J.; De Lorenzis, L., Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity, Comput. Methods Appl. Mech. Engrg., 369, Article 113112 pp. (2020) · Zbl 1506.74060
[34] Anitescu, C.; Jia, Y.; Zhang, Y. J.; Rabczuk, T., An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073-1097 (2015) · Zbl 1425.65193
[35] Gomez, H.; De Lorenzis, L., The variational collocation method, Comput. Methods Appl. Mech. Engrg., 309, 152-181 (2016) · Zbl 1439.74489
[36] Montardini, M.; Sangalli, G.; Tamellini, L., Optimal-order isogeometric collocation at Galerkin superconvergent points, Comput. Methods Appl. Mech. Engrg., 316, 741-757 (2017) · Zbl 1439.65187
[37] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[38] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 45-48, 3768-3782 (2008) · Zbl 1194.74517
[39] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p-and B-spline versions of the Finite Cell Method, Comput. Mech., 50, 4, 445-478 (2012) · Zbl 1398.74401
[40] Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E., Smart octrees: Accurately integrating discontinuous functions in 3D, Comput. Methods Appl. Mech. Engrg., 306, 406-426 (2016) · Zbl 1436.65022
[41] Hubrich, S.; Di Stolfo, P.; Kudela, L.; Kollmannsberger, S.; Rank, E.; Schröder, A.; Düster, A., Numerical integration of discontinuous functions: moment fitting and smart octree, Comput. Mech., 60, 5, 863-881 (2017) · Zbl 1387.65025
[42] Garhuom, W.; Düster, A., Non-negative moment fitting quadrature for cut finite elements and cells undergoing large deformations, Comput. Mech., 70, 5, 1059-1081 (2022) · Zbl 1501.74070
[43] Abedian, A.; Düster, A., Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods, Comput. Methods Appl. Mech. Engrg., 343, 690-720 (2019) · Zbl 1440.65166
[44] Rank, E.; Kollmannsberger, S.; Sorger, C.; Düster, A., Shell finite cell method: a high order fictitious domain approach for thin-walled structures, Comput. Methods Appl. Mech. Engrg., 200, 45-46, 3200-3209 (2011) · Zbl 1230.74232
[45] Carraturo, M.; Kollmannsberger, S.; Reali, A.; Auricchio, F.; Rank, E., An immersed boundary approach for residual stress evaluation in selective laser melting processes, Addit. Manuf., 46, Article 102077 pp. (2021)
[46] Carraturo, M.; Jomo, J.; Kollmannsberger, S.; Reali, A.; Auricchio, F.; Rank, E., Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes, Addit. Manuf., 36, Article 101498 pp. (2020)
[47] Nitti, A.; Kiendl, J.; Gizzi, A.; Reali, A.; de Tullio, M. D., A curvilinear isogeometric framework for the electromechanical activation of thin muscular tissues, Comput. Methods Appl. Mech. Engrg., 382, Article 113877 pp. (2021) · Zbl 1506.74210
[48] Torre, M.; Morganti, S.; Nitti, A.; de Tullio, M. D.; Pasqualini, F. S.; Reali, A., An efficient isogeometric collocation approach to cardiac electrophysiology, Comput. Methods Appl. Mech. Engrg., 393, Article 114782 pp. (2022) · Zbl 1507.74237
[49] Fish, J.; Belytschko, T., A First Course in Finite Elements, Vol. 1 (2007), John Wiley & Sons: John Wiley & Sons New York · Zbl 1135.74001
[50] Hughes, T. J., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Courier Corporation
[51] Babuška, I., The finite element method with penalty, Math. Comp., 27, 122, 221-228 (1973) · Zbl 0299.65057
[52] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 12, 1257-1275 (2004) · Zbl 1060.74665
[53] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[54] van Zwieten, G.; van Zwieten, J.; Hoitinga, W., Nutils (2022)
[55] ABAQUS Standard User’s Manual (2017), Dassault Systemes Simulia Corp.
[56] Kiendl, J., Isogeometric Analysis and Shape Optimal Design of Shell Structures (2011), Technische Universität München, (Ph.D. thesis)
[57] Patton, A.; Antolín, P.; Kiendl, J.; Reali, A., Efficient equilibrium-based stress recovery for isogeometric laminated curved structures, Compos. Struct., 272, Article 113975 pp. (2021)
[58] Lopez-Perez, A.; Sebastian, R.; Izquierdo, M.; Ruiz, R.; Bishop, M.; Ferrero, J. M., Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia, Front. Physiol., 10, 580 (2019)
[59] Connolly, A. J.; Bishop, M. J., Computational representations of myocardial infarct scars and implications for arrhythmogenesis, Clin. Med. Insights: Cardiol., 10, CMC-S39708 (2016)
[60] Coradello, L.; D’Angella, D.; Carraturo, M.; Kiendl, J.; Kollmannsberger, S.; Rank, E.; Reali, A., Hierarchically refined isogeometric analysis of trimmed shells, Comput. Mech., 66, 2, 431-447 (2020) · Zbl 1464.74367
[61] Itskov, M., Tensor Algebra and Tensor Analysis for Engineers (2007), Springer · Zbl 1116.15027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.