×

An adaptive isogeometric analysis collocation method with a recovery-based error estimator. (English) Zbl 1440.65248

Summary: In this paper, we propose an enhanced isogeometric analysis (IGA) collocation method. It is well known that the location of the collocation points plays an important role in the accuracy and stability of IGA collocation methods. This is particularly true for non-uniform meshes and domains generated from multi-patch geometries. We present an enhanced collocation method based on Gauss points, which has improved accuracy as compared to using \(C^1\) splines and a recovery-based error estimator that can be derived by sampling the solution at particular points in the domain. Adaptivity is implemented using a hierarchical spline basis, which satisfies the \(C^1\) continuity requirement. The proposed approach has been tested by several benchmark problems, including multipatch domains and geometries with re-entrant corners.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65D07 Numerical computation using splines

Software:

FEAP
Full Text: DOI

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis (2009), John Wiley & Sons, Ltd · Zbl 1378.65009
[3] Kiendl, J.; Hsu, M. C.; Wu, M. C.; Reali, A., Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 280-303 (2015) · Zbl 1423.74177
[4] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1367-1378 (2011) · Zbl 1228.74077
[5] Lai, Y.; Zhang, Y.; Liu, L.; Wei, X.; Fang, E.; Lua, J., Integrating CAD with Abaqus: A practical isogeometric analysis software plateform for industrial application, Comput. Math. Appl., 74, 7, 1648-1660 (2017) · Zbl 1397.65276
[6] Taylor, R. L., FEAP - Finite Element Analysis Program (2014), University of California: University of California Berkeley, http://www.ce.berkeley.edu/feap
[7] Benson, D. J.; Bazilevs, Y.; Luycker, E. De; Hsu, M. C.; Scott, M. A.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Internat. J. Numer. Methods Engrg., 83, 765-785 (2010) · Zbl 1197.74177
[8] Sederberg, T. W.; Zheng, J.; Bakenov, A., T-splines and T-NURCCs, ACM Trans. Graph., 22, 3, 477-484 (2003)
[9] Li, X.; Scott, M. A., Analysis-suitable T-splines: Characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 6, 1141-1164 (2014) · Zbl 1292.41004
[10] Evans, E. J.; Scott, M. A.; Li, X.; Thomas, D. C., Hierarchical T-splines: Analysis suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 1-20 (2015) · Zbl 1425.65025
[11] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 4, 76-86 (2008)
[12] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498 (2012) · Zbl 1252.65030
[13] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined Box-partition, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[14] Wei, X.; Zhang, Y.; Liu, L.; Hughes, T. J.R., Truncated T-splines: Fundamentals and methods, Comput. Methods Appl. Mech. Engrg., 316, 349-372 (2017) · Zbl 1439.65018
[15] Nguyen, L. H.; Schillinger, D., A collocated isogeometric finite element method based on Gauss-Lobatto Lagrange extraction of splines, Comput. Methods Appl. Mech. Engrg., 316, 720-740 (2017) · Zbl 1439.65188
[16] Schillinger, D.; Hossain, S. J.; Hughes, T. J.R., Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1-45 (2014) · Zbl 1425.65177
[17] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publicatins, Inc.: Dover Publicatins, Inc. Mineola, New York · Zbl 1191.74002
[18] Hughes, T. J.R.; Reali, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 301-313 (2010) · Zbl 1227.65029
[19] Auricchio, F.; Calabro, F.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249-252, 15-27 (2012) · Zbl 1348.65059
[20] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[21] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249-252, 2-14 (2012) · Zbl 1348.74305
[22] Beirão da Veiga, L.; Lovadina, C.; Reali, A., Avoiding shear locking for the Timonshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241-244, 38-51 (2012) · Zbl 1353.74045
[23] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J.R., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170-232 (2013) · Zbl 1286.65174
[24] Li, H.; Hu, Q.; Xiong, Y., Consistency and convergence properties of the isogeometric collocation method, Comput. Methods Appl. Mech. Engrg., 267, 471-486 (2013) · Zbl 1286.65173
[25] Farin, G., Curves and Surfaces for CAGD (1999), Morgan Kaufmann Publisher: Morgan Kaufmann Publisher San Francisco
[26] Anitescu, C.; Jia, Y.; Zhang, Y.; Rabczuk, T., An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073-1097 (2015) · Zbl 1425.65193
[27] Gomez, H.; De Lorenzis, L., The variational collocation method, Comput. Methods Appl. Mech. Engrg., 309, 152-181 (2016) · Zbl 1439.74489
[28] Montardini, M.; Sangalli, G.; Tamellini, L., Optimal-order isogeometric collocation at Galerkin superconvergent points, Comput. Methods Appl. Mech. Engrg., 316, 741-757 (2017) · Zbl 1439.65187
[29] De Lorenzis, L.; Evans, J. A.; Hughes, T. J.R.; Reali, A., Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21-54 (2015) · Zbl 1423.74947
[30] Schillinger, D.; Borden, M. J.; Stolarski, H. K., Isogeometric collocation for phase-field fracture models, Comput. Methods Appl. Mech. Engrg., 284, 583-610 (2015) · Zbl 1423.74848
[31] Babǔska, I.; Rheinboldt, W. C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 10, 1597-1615 (1978) · Zbl 0396.65068
[32] Babǔska, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 4, 736-754 (1978) · Zbl 0398.65069
[33] Anitescu, C.; Hossain, M. N.; Rabczuk, T., Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes, Comput. Methods Appl. Mech. Engrg., 328, 638-662 (2018) · Zbl 1439.65011
[34] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergence patch recovery and a posteriori error estimation in the finite element method, Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[35] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergence patch recovery and a posteriori error estimation in the finite element method, Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33, 7, 1365-1382 (1992) · Zbl 0769.73085
[36] Buffa, A.; Cho, D.; Kumar, M., Characterization of T-splines with reduced continuity order on T-meshes, Comput. Methods Appl. Mech. Engrg., 201-204, 112-126 (2012) · Zbl 1239.65012
[37] Wang, P.; Xu, J.; Deng, J.; Chen, F., Adaptive isogeometric analysis using rational PHT-splines, Comput. Aided Des., 43, 11, 1438-1448 (2011)
[38] de Boor, C.; Schwartz, B., Collocation at Gaussian points, SIAM J. Numer. Anal., 10, 4, 582-606 (1973) · Zbl 0232.65065
[39] Casquero, H.; Liu, L.; Zhang, Y.; Reali, A.; Gomez, H., Isogeometric collocation using analysis-suitable T-splines of arbitrary degree, Comput. Methods Appl. Mech. Engrg., 301, 164-186 (2016) · Zbl 1425.65195
[40] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R, Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 15-47 (2011) · Zbl 1242.74097
[41] Zhu, J. Z.; Zienkiewicz, O. C., Superconvergence recovery technique and a posteriori error estimators, Internat. J. Numer. Methods Engrg., 30, 7, 1321-1339 (1990) · Zbl 0716.73083
[42] Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 3, 347-392 (1996) · Zbl 0854.65089
[43] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090
[44] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw · Zbl 0266.73008
[45] Babǔska, I.; Strouboulis, T.; Upadhyay, C. S., A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Engrg., 114, 3-4, 307-378 (1994)
[46] González-Estrada, O. A.; Ródenas, J. J.; Bordas, S. P.A.; Duflot, M.; Kerfriden, P.; Giner, E., On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods, Engineering Computations: International Journal for Computer-Aided Engineering and Software, 29, 9, 814-841 (2012)
[47] Kang, H.; Xu, J.; Chen, F.; Deng, J., A new basis for PHT-splines, Graph. Models, 82, 149-159 (2015)
[48] Gould, P. L., Introduction to Linear Elasticity (1999), Springer-Verlag
[49] Szabó, B.; Babǔska, I., Finite Element Analysis (1991), John Wiley and Sons · Zbl 0792.73003
[50] Schillinger, D.; Evans, J. A.; Frischmann, F.; Hiemstra, R. R.; Hsu, M. C.; Hughes, T. J.R., A collocated \(C{}^0\) finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dyanmics, Internat. J. Numer. Methods Engrg., 102, 576-631 (2015) · Zbl 1352.74433
[51] Barber, J. R., Elasticity (2010), Springer-Verlag New York · Zbl 1068.74001
[52] Scott, M. A.; Simpson, R. N.; Evens, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.