×

A kinematically stabilized linear tetrahedral finite element for compressible and nearly incompressible finite elasticity. (English) Zbl 1539.74472

Summary: We propose a stabilized linear tetrahedral finite element method for static, finite elasticity problems involving compressible and nearly incompressible materials. Our approach relies on a mixed formulation, in which the nodal displacement unknown filed is complemented by a nodal Jacobian determinant unknown field. This approach is simple to implement in practical applications (e.g., in commercial software), since it only requires information already available when computing the Newton-Raphson tangent matrix associated with irreducible (i.e., displacement-based) finite element formulations. By nature, the proposed method is easily extensible to nonlinear models involving visco-plastic flow. An extensive suite of numerical tests in two and three dimensions is presented, to demonstrate the performance of the method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74B20 Nonlinear elasticity

Software:

SymPy
Full Text: DOI

References:

[1] Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; Rossi, Simone, A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach, Internat. J. Numer. Methods Engrg., 106, 799-839 (2016) · Zbl 1352.74434
[2] Rossi, R.; Zorrilla, R.; Codina, R., A stabilised displacement volumetric strain formulation for nearly incompressible and anisotropic materials, Comput. Methods Appl. Mech. Engrg., 377, Article 113701 pp. (2021) · Zbl 1506.74079
[3] Cervera, M.; Chiumenti, M.; Codina, R., Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: Formulation, Comput. Methods Appl. Mech. Engrg., 199, 37-40, 2559-2570 (2010) · Zbl 1231.74404
[4] Cervera, M.; Chiumenti, M.; Codina, R., Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: Strain localization, Comput. Methods Appl. Mech. Engrg., 199, 37-40, 2571-2589 (2010) · Zbl 1231.74405
[5] Cervera, M.; Chiumenti, M.; Benedetti, L.; Codina, R., Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity, Comput. Methods Appl. Mech. Engrg., 285, 752-775 (2015) · Zbl 1423.74149
[6] Chiumenti, M.; Cervera, M.; Codina, R., A mixed three-field finite element formulation for stress accurate analysis including the incompressible limit, Comput. Methods Appl. Mech. Engrg., 283, 1095-1116 (2015) · Zbl 1423.74871
[7] Lafontaine, N. M.; Rossi, R.; Cervera, M.; Chiumenti, M., Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics, Comput. Mech., 55, 3, 543-559 (2015) · Zbl 1311.74028
[8] Bonet, Javier; Gil, Antonio J.; Ortigosa, Rogelio, A computational framework for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg., 283, 1061-1094 (2015) · Zbl 1423.74122
[9] Bonet, Javier; Gil, Antonio J.; Lee, Chun Hean; Aguirre, Miquel; Ortigosa, Rogelio, A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity, Comput. Methods Appl. Mech. Engrg., 283, 689-732 (2015) · Zbl 1423.74010
[10] Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier; Ortigosa, Rogelio, A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity, Comput. Methods Appl. Mech. Engrg., 300, 146-181 (2016) · Zbl 1425.74016
[11] Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier; Aguirre, Miquel, A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics, Comput. Methods Appl. Mech. Engrg., 276, 659-690 (2014) · Zbl 1423.74883
[12] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods - Reduced and selective integration techniques: A unification of concepts, Comput. Methods Appl. Mech. Engrg., 15, 1, 68-81 (1978) · Zbl 0381.73075
[13] Hughes, Thomas J. R.; Franca, Leopoldo P.; Balestra, Marc, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 1, 85-99 (1986) · Zbl 0622.76077
[14] Hughes, Thomas J. R.; Franca, Leopoldo P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 1, 85-96 (1987) · Zbl 0635.76067
[15] Franca, Leopoldo P.; Hughes, Thomas J. R., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 1, 89-129 (1988) · Zbl 0629.73053
[16] Klaas, Ottmar; Maniatty, Antoinette; Shephard, Mark S., A stabilized mixed finite element method for finite elasticity. formulation for linear displacement and pressure interpolation, Comput. Methods Appl. Mech. Engrg., 180, 1-2, 65-79 (1999) · Zbl 0959.74066
[17] Maniatty, Antoinette M.; Liu, Yong; Klaas, Ottmar; Shephard, Mark S., Stabilized finite element method for viscoplastic flow: formulation and a simple progressive solution strategy, Comput. Methods Appl. Mech. Engrg., 190, 35-36, 4609-4625 (2001) · Zbl 1059.74056
[18] Maniatty, Antoinette M.; Liu, Yong; Klaas, Ottmar; Shephard, Mark S., Higher order stabilized finite element method for hyperelastic finite deformation, Comput. Methods Appl. Mech. Engrg., 191, 13-14, 1491-1503 (2002) · Zbl 1098.74704
[19] Maniatty, Antoinette M.; Liu, Yong, Stabilized finite element method for viscoplastic flow: formulation with state variable evolution, Internat. J. Numer. Methods Engrg., 56, 2, 185-209 (2003) · Zbl 1116.74431
[20] Ramesh, Binoj; Maniatty, Antoinette M., Stabilized finite element formulation for elastic-plastic finite deformations, Comput. Methods Appl. Mech. Engrg., 194, 6-8, 775-800 (2005) · Zbl 1112.74536
[21] Masud, Arif; Xia, Kaiming, A stabilized mixed finite element method for nearly incompressible elasticity, J. Appl. Mech., 72, 5, 711-720 (2005) · Zbl 1111.74548
[22] Nakshatrala, K. B.; Masud, A.; Hjelmstad, K. D., On finite element formulations for nearly incompressible linear elasticity, Comput. Mech., 41, 4, 547-561 (2008) · Zbl 1162.74472
[23] Xia, Kaiming; Masud, Arif, A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics, Comput. Geotech., 36, 3, 396-405 (2009)
[24] Masud, Arif; Truster, Timothy J., A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and \(\overline{F}\) methods for linear triangles and tetrahedra, Comput. Methods Appl. Mech. Engrg., 267, 359-399 (2013) · Zbl 1286.74018
[25] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover: Dover Mineola, New York · Zbl 1191.74002
[26] Hughes, T. J.R., Equivalence of finite elements for nearly incompressible elasticity, JAM, 44, 1, 181-183 (1977)
[27] Hughes, T. J.R., Generalization of selective integration procedure to anisotropic and nonlinear media, Internat. J. Numer. Methods Engrg., 15, 1, 1413-1418 (1980) · Zbl 0437.73053
[28] de Souza Neto, E. A.; Andrade Pires, F. M.; Owen, D. R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: Formulation and benchmarking, Internat. J. Numer. Methods Engrg., 62, 3, 353-383 (2005) · Zbl 1179.74159
[29] de Souza Neto, E. A.; Perić, D.; Huang, G. C.; Owen, D. R.J., Remarks on the stability of enhanced strain elements in finite elasticity and elastocplasticity, Commun. Numer. Methods Eng., 11, 11, 951-961 (1995) · Zbl 0836.73066
[30] De Souza Neto, E. A.; Perić, D.; Dutko, M.; Owen, D. R.J., Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Solids Struct., 33, 20-22, 3277-3296 (1996) · Zbl 0929.74102
[31] Hughes, Thomas J. R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 1-4, 387-401 (1995) · Zbl 0866.76044
[32] Hughes, Thomas J. R.; Feijóo, Gonzalo R.; Mazzei, Luca; Quincy, Jean-Baptiste, The variational multiscale method – a paradigm for computational mechancics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[33] Hughes, T. J.R.; Scovazzi, G.; Franca, L. P., Multiscale and stabilized methods, (Stein, E.; de Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics (2004), John Wiley & Sons) · Zbl 1190.76001
[34] Chiumenti, Michele; Valverde, Quino; De Saracibar, C. Agelet; Cervera, Miguel, A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations, Comput. Methods Appl. Mech. Engrg., 191, 46, 5253-5264 (2002) · Zbl 1083.74584
[35] Cervera, Miguel; Chiumenti, Michele; Valverde, Quino; de Saracibar, C. Agelet, Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. Methods Appl. Mech. Engrg., 192, 49, 5249-5263 (2003) · Zbl 1054.74050
[36] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra, Int. J. Plast., 20, 8-9, 1487-1504 (2004) · Zbl 1066.74587
[37] Codina, Ramon, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg., 190, 13, 1579-1599 (2000) · Zbl 0998.76047
[38] Agelet de Saracibar, C.; Chiumenti, M.; Valverde, Q.; Cervera, M., On the orthogonal subgrid scale pressure stabilization of finite deformation \(J_2\) plasticity, Comput. Methods Appl. Mech. Engrg., 195, 9, 1224-1251 (2006) · Zbl 1175.74080
[39] Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M., Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity, Comput. Mech., 58, 3, 511-532 (2016) · Zbl 1398.74315
[40] Bonet, J.; Marriott, H.; Hassan, O., Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications, Internat. J. Numer. Methods Engrg., 50, 1, 119-133 (2001) · Zbl 1082.74547
[41] Bonet, J.; Burton, A. J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Commun. Numer. Methods Eng., 14, 5, 437-449 (1998) · Zbl 0906.73060
[42] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral, Internat. J. Numer. Methods Engrg., 67, 6, 841-867 (2006) · Zbl 1113.74075
[43] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Internat. J. Numer. Methods Engrg., 47, 9, 1549-1568 (2000) · Zbl 0989.74067
[44] Gee, M. W.; Dohrmann, C. R.; Key, S. W.; Wall, W. A., A uniform nodal strain tetrahedron with isochoric stabilization, Internat. J. Numer. Methods Engrg., 78, 4, 429-443 (2009) · Zbl 1183.74275
[45] Stenberg, Rolf, A family of mixed finite elements for the elasticity problem, Numer. Math., 53, 5, 513-538 (1988) · Zbl 0632.73063
[46] Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Carreño, Aurelio Arranz, A vertex centred finite volume Jameson-Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics, J. Comput. Phys., 259, 672-699 (2014) · Zbl 1349.74341
[47] Lee, Chun Hean; Gil, Antonio J.; Bonet, Javier, Development of a stabilised Petrov-Galerkin formulation for conservation laws in Lagrangian fast solid dynamics, Comput. Methods Appl. Mech. Engrg., 268, 40-64 (2014) · Zbl 1295.74099
[48] Lee, Chun Hean; Gil, Antonio J.; Bonet, Javier, Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics, Comput. Struct., 118, 13-38 (2013)
[49] Trangenstein, John A., Second-order godunov algorithm for two-dimensional solid mechanics, Comput. Mech., 13, 343-359 (1994) · Zbl 0793.73102
[50] Pember, R. B.; Trangenstein, John A., Numerical algorithms for strong discontinuities in elastic-plastic solids, J. Comput. Phys., 103, 1, 63-89 (1992) · Zbl 0779.73080
[51] Colella, Philip; Trangenstein, John, A higher-order godunov method for modeling finite deformation in elastic-plastic solids, Comm. Pure Appl. Math., 44, 41-100 (1991) · Zbl 0714.73027
[52] Trangenstein, John A., The Riemann problem for longitudinal motion in an elastic-plastic bar, SJSSC, 12, 180-207 (1991) · Zbl 0714.73028
[53] Gil, Antonio J.; Ortigosa, Rogelio, A new framework for large strain electromechanics based on convex multi-variable strain energies: Variational formulation and material characterisation, Comput. Methods Appl. Mech. Engrg., 302, 293-328 (2016) · Zbl 1425.74024
[54] Gil, Antonio J.; Ortigosa, Rogelio; Bonet, Javier, A computational framework for polyconvex large strain electro-mechanics, J. Mech. Phys. Solids (2014), submitted for publication · Zbl 1423.74122
[55] Shakib, F.; Hughes, T. J.R., A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms, Comput. Methods Appl. Mech. Engrg., 87, 35-58 (1991) · Zbl 0760.76051
[56] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141-219 (1991)
[57] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54, 223-234 (1986) · Zbl 0572.76068
[58] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[59] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[60] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[61] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 63, 97-112 (1987) · Zbl 0635.76066
[62] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[63] Hauke, G., Simple stabilizing matrices for the computation of compressible flows in primitive variables, Comput. Methods Appl. Mech. Engrg., 190, 6881-6893 (2001) · Zbl 0996.76047
[64] Hauke, G.; Hughes, T. J.R., A unified approach to compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 113, 389-396 (1994) · Zbl 0845.76040
[65] Hauke, G.; Hughes, T. J.R., A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 153, 1-44 (1998) · Zbl 0957.76028
[66] Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Lee, Chun Hean, An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics, J. Comput. Phys., 300, 387-422 (2015) · Zbl 1349.74342
[67] Cardiff, Philip; Tuković, Željko; Jaeger, P. De; Clancy, M.; Ivanković, A., A Lagrangian cell-centred finite volume method for metal forming simulation, Internat. J. Numer. Methods Engrg., 109, 1777-1803 (2017) · Zbl 1365.65202
[68] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach, J. Comput. Phys., 231, 24, 8029-8069 (2012)
[69] Rossi, S.; Abboud, N.; Scovazzi, G., Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form, Comput. Methods Appl. Mech. Engrg., 311, 208-249 (2016) · Zbl 1439.74464
[70] Zeng, Xianyi; Scovazzi, Guglielmo; Abboud, Nabil; Colomès, Oriol; Rossi, Simone, A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements, Internat. J. Numer. Methods Engrg., 112, 13 (2017) · Zbl 07867199
[71] Abboud, Nabil; Scovazzi, Guglielmo, Elastoplasticity with linear tetrahedral elements: A variational multiscale method, Internat. J. Numer. Methods Engrg., 115, 8, 913-955 (2018) · Zbl 07865132
[72] Scovazzi, G.; Song, T.; Zeng, X., A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions, Comput. Methods Appl. Mech. Engrg., 325, 532-576 (2017) · Zbl 1439.74148
[73] Zienkiewicz, O. C.; Rojek, J.; Taylor, R. L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Internat. J. Numer. Methods Engrg., 43, 3, 565-583 (1998) · Zbl 0939.74073
[74] Mira, P.; Pastor, M.; Li, T.; Liu, X., A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems, Comput. Methods Appl. Mech. Engrg., 192, 37-38, 4257-4277 (2003) · Zbl 1181.74138
[75] Li, X.; Han, X.; Pastor, M., An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics, Comput. Methods Appl. Mech. Engrg., 192, 35-36, 3845-3859 (2003) · Zbl 1054.74732
[76] Pastor, M.; Quecedo, M.; Zienkiewicz, O. C., A mixed displacement-pressure formulation for numerical analysis of plastic failure, Comput. Struct., 62, 1, 13-23 (1997) · Zbl 0910.73063
[77] Pastor, M.; Zienkiewicz, O. C.; Li, T.; Xiaoqing, L.; Huang, M., Stabilized finite elements with equal order of interpolation for soil dynamics problems, Arch. Comput. Methods Eng., 6, 1, 3-33 (1999)
[78] Rojek, Jerzy; Oñate, Eugenio; Taylor, Robert L., CBS-based stabilization in explicit solid dynamics, Internat. J. Numer. Methods Engrg., 66, 10, 1547-1568 (2006) · Zbl 1110.74856
[79] Oñate, Eugenio; Rojek, Jerzy; Taylor, Robert L.; Zienkiewicz, Olgierd C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedra, Internat. J. Numer. Methods Engrg., 59, 11, 1473-1500 (2004) · Zbl 1041.74546
[80] Guo, Yong; Ortiz, Michael; Belytschko, Ted; Repetto, Eduardo A., Triangular composite finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 287-316 (2000) · Zbl 0985.74068
[81] Thoutireddy, P.; Molinari, J. F.; Repetto, E. A.; Ortiz, M., Tetrahedral composite finite elements, Internat. J. Numer. Methods Engrg., 53, 6, 1337-1351 (2002) · Zbl 1112.74544
[82] Pakravan, Alireza; Krysl, Petr, Mean-strain 10-node tetrahedron with energy-sampling stabilization, Internat. J. Numer. Methods Engrg., 109, 1439-1460 (2017) · Zbl 1378.74009
[83] Onishi, Y.; Iida, R.; Amaya, K., F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids, Internat. J. Numer. Methods Engrg., 109, 1582-1606 (2017) · Zbl 1380.65386
[84] Pires, F. M.A.; de Souza Neto, E. A.; de la Cuesta Padilla, J. L., An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains, Commun. Numer. Methods Eng., 20, 7, 569-583 (2004) · Zbl 1302.74173
[85] Eyck, A. T.; Lew, A., Discontinuous Galerkin methods for non-linear elasticity, Internat. J. Numer. Methods Engrg., 67, 1204-1243 (2006) · Zbl 1113.74068
[86] Eyck, A. T.; Celiker, F.; Lew, A., Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Analytical estimates, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 2989-3000 (2008) · Zbl 1194.74390
[87] Eyck, A. T.; Celiker, F.; Lew, A., Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Motivation, formulation, and numerical examples, Comput. Methods Appl. Mech. Engrg., 197, 45-48, 3605-3622 (2008) · Zbl 1194.74389
[88] Eyck, A. T.; Lew, A., An adaptive stabilization strategy for enhanced strain methods in non-linear elasticity, Internat. J. Numer. Methods Engrg., 81, 11, 1387-1416 (2010) · Zbl 1183.74270
[89] Kabaria, H.; Lew, A. J.; Cockburn, B., A hybridizable discontinuous Galerkin formulation for non-linear elasticity, Comput. Methods Appl. Mech. Engrg., 283, 303-329 (2015) · Zbl 1423.74895
[90] Taylor, Robert L., A mixed-enhanced formulation tetrahedral finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 205-227 (2000) · Zbl 0985.74074
[91] Kasper, E. P.; Taylor, R. L., A mixed-enhanced strain method. Part I: Geometrically linear problems, Comput. Struct., 75, 237-250 (2000)
[92] Kasper, E. P.; Taylor, R. L., A mixed-enhanced strain method. Part II: Geometrically nonlinear problems, Comput. Struct., 75, 252-260 (2000)
[93] Auricchio, Ferdinando; da Veiga, L. Beirao; Lovadina, Carlo; Reali, Alessandro, An analysis of some mixed-enhanced finite element for plane linear elasticity, Comput. Methods Appl. Mech. Engrg., 194, 27, 2947-2968 (2005) · Zbl 1091.74046
[94] Arnold, Douglas N.; Winther, Ragnar, Mixed finite elements for elasticity, Numer. Math., 92, 3, 401-419 (2002) · Zbl 1090.74051
[95] Arnold, Douglas N.; Winther, Ragnar, Nonconforming mixed elements for elasticity, Math. Models Methods Appl. Sci., 13, 3, 295-307 (2003) · Zbl 1057.74036
[96] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Differential complexes and stability of finite element methods II: The elasticity complex, (Compatible Spatial Discretizations: The IMA Volumes in Mathematics and its Applications, Vol. 142 (2006)), 47-67 · Zbl 1119.65399
[97] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp., 76, 1699-1723 (2007) · Zbl 1118.74046
[98] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Differential complexes and stability of finite element methods I. The de Rham complex, (Compatible Spatial Discretizations: The IMA Volumes in Mathematics and its Applications, Vol. 142 (2006)), 23-46 · Zbl 1119.65398
[99] Chi, Heng; Talischi, Cameron; Lopez-Pamies, Oscar; Paulino, Glaucio H., Polygonal finite elements for finite elasticity, Internat. J. Numer. Methods Engrg., 101, 305-328 (2015) · Zbl 1352.74044
[100] Coleman, Bernard D.; Noll, Walter, The thermodynamics of elastic materials with heat conduction and viscosity, (The Foundations of Mechanics and Thermodynamics (1974), Springer), 145-156
[101] Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz; Čertík, Ondřej; Kirpichev, Sergey B.; Rocklin, Matthew; Kumar, AMiT; Ivanov, Sergiu; Moore, Jason K.; Singh, Sartaj; Rathnayake, Thilina; Vig, Sean; Granger, Brian E.; Muller, Richard P.; Bonazzi, Francesco; Gupta, Harsh; Vats, Shivam; Johansson, Fredrik; Pedregosa, Fabian; Curry, Matthew J.; Terrel, Andy R.; Roučka, Štěpán; Saboo, Ashutosh; Fernando, Isuru; Kulal, Sumith; Cimrman, Robert; Scopatz, Anthony, SymPy: symbolic computing in Python, PeerJ Comput. Sci., 3, Article e103 pp. (2017)
[102] Dadvand, P.; Rossi, R.; Oñate, E., An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch. Comput. Methods Eng., 17, 3, 253-297 (2010) · Zbl 1360.76130
[103] Dadvand, P.; Rossi, R.; Gil, M.; Martorell, X.; Cotela, J.; Juanpere, E.; Idelsohn, S. R.; Oñate, E., Migration of a generic multi-physics framework to HPC environments, Comput. & Fluids, 80, 301-309 (2013) · Zbl 1426.76644
[104] Simo, Juan C.; Taylor, Robert L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Engrg., 85, 3, 273-310 (1991) · Zbl 0764.73104
[105] Coll, A.; Ribó, R.; Pasenau, M.; Escolano, E.; Perez, J. Suit.; Melendo, A.; Monros, A.; Gárate, J., GiD v.14 reference manual (2018)
[106] Coll, A.; Ribó, R.; Pasenau, M.; Escolano, E.; Perez, J. Suit.; Melendo, A.; Monros, A.; Gárate, J., GiD v.14 customization manual (2018)
[107] Reese, S.; Wriggers, P.; Reddy, B. D., A new locking-free brick element technique for large deformation problems in elasticity, Comput. Struct., 75, 3, 291-304 (2000)
[108] Elguedj, T.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., \( \overline{B}\) And \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 33, 2732-2762 (2008) · Zbl 1194.74518
[109] Caylak, Ismail; Mahnken, Rolf, Stabilization of mixed tetrahedral elements at large deformations, Internat. J. Numer. Methods Engrg., 90, 2, 218-242 (2012) · Zbl 1242.74100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.