×

A modified combined active-set Newton method for solving phase-field fracture into the monolithic limit. (English) Zbl 1539.74444

Summary: In this work, we examine a numerical phase-field fracture framework in which the crack irreversibility constraint is treated with a primal-dual active set method and a linearization is used in the degradation function to enhance the numerical stability. The first goal is to carefully derive from a complementarity system our primal-dual active set formulation, which has been used in the literature in numerous studies, but for phase-field fracture without its detailed mathematical derivation yet. Based on the latter, we formulate a modified combined active-set Newton approach that significantly reduces the computational cost in comparison to comparable prior algorithms for quasi-monolithic settings. For many practical problems, Newton converges fast, but active set needs many iterations, for which three different efficiency improvements are suggested in this paper. Afterwards, we design an iteration on the linearization in order to iterate the problem to the monolithic limit. Our new algorithms are implemented in the programming framework pfm-cracks from T. Heister and T. Wick [Softw. Impacts 6, Article ID 100045, (2020; doi:10.1016/j.simpa.2020.100045)]. In the numerical examples, we conduct performance studies and investigate efficiency enhancements. The main emphasis is on the cost complexity by keeping the accuracy of numerical solutions and goal functionals. Our algorithmic suggestions are substantiated with the help of several benchmarks in two and three spatial dimensions. Therein, predictor-corrector adaptivity and parallel performance studies are explored as well.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74Rxx Fracture and damage

References:

[1] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[2] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[3] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[4] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Engrg. Fract. Mech., 77, 18, 3625-3634 (2010), Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross
[5] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1-3, 1-148 (2008) · Zbl 1176.74018
[6] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[7] Wu, J.-Y.; Nguyen, V. P.; Thanh Nguyen, C.; Sutula, D.; Bordas, S.; Sinaie, S., Phase field modelling of fracture, Adv. Appl. Mech., 53, 09 (2019)
[8] Wick, T., Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers, Vol. 28 (2020), Walter de Gruyter GmbH & Co KG · Zbl 1448.74003
[9] Bourdin, B.; Francfort, G. A., Past and present of variational fracture, SIAM News, 52, 9 (2019)
[10] Diehl, P.; Lipton, R.; Wick, T.; Tyagi, M., A comparative review of peridynamics and phase-field models for engineering fracture mechanics, Comput. Mech., 69, 1259-1293 (2022) · Zbl 1505.74191
[11] (Aldakheel, F.; Hudobivnik, B.; Soleimani, M.; Wessels, H.; Weissenfels, C.; Marino, M., Current Trends and Open Problems in Computational Mechanics (2022), Springer: Springer Cham) · Zbl 1487.74005
[12] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[13] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 3, 980-1012 (2010) · Zbl 1305.74080
[14] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional, Math. Models Methods Appl. Sci., 23, 9, 1663-1697 (2013) · Zbl 1266.74044
[15] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[16] Storvik, E.; Both, J. W.; Sargado, J. M.; Nordbotten, J. M.; Radu, F. A., An accelerated staggered scheme for variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 381, Article 113822 pp. (2021) · Zbl 1506.74366
[17] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., Validation simulations for the variational approach to fracture, Comput. Methods Appl. Mech. Engrg., 290, 420-437 (2015) · Zbl 1423.74960
[18] Luo, C., Fast staggered schemes for the phase-field model of brittle fracture based on the fixed-stress concept, Comput. Methods Appl. Mech. Engrg., 404, Article 115787 pp. (2023) · Zbl 07644860
[19] Gerasimov, T.; Lorenzis, L. D., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg., 312, 276-303 (2016) · Zbl 1439.74349
[20] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput. Methods Appl. Mech. Engrg., 325, 577-611 (2017) · Zbl 1439.74375
[21] Wick, T., An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J. Sci. Comput., 39, 4, B589-B617 (2017) · Zbl 1403.74131
[22] Farrell, P. E.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg., 109, 648-667 (2017) · Zbl 07874318
[23] Kopaničáková, A.; Krause, R., A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 360, Article 112720 pp. (2020) · Zbl 1441.74208
[24] Kopaničáková, A.; Kothari, H.; Krause, R., Nonlinear field-split preconditioners for solving monolithic phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 403, Article 115733 pp. (2023) · Zbl 1536.74223
[25] Lampron, O.; Therriault, D.; Lévesque, M., An efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton method, Comput. Methods Appl. Mech. Engrg., 386, Article 114091 pp. (2021) · Zbl 1507.74394
[26] Lampron, O., Phase-Field Modeling of Fracture in Additively Manufactured Thermoplastic Parts (2023), Polytechnique Montréal, (Ph.D. thesis)
[27] Wambacq, J.; Ulloa, J.; Lombaert, G.; François, S., Interior-point methods for the phase-field approach to brittle and ductile fracture, Comput. Methods Appl. Mech. Engrg., 375, 27 (2021), Paper No. 113612 · Zbl 1506.74026
[28] Kristensen, P. K.; Martínez-Pañeda, E., Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme, Theor. Appl. Fract. Mech., 107, Article 102446 pp. (2020)
[29] Gräser, C.; Kienle, D.; Sander, O., Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis, Comput. Mech. (2023) · Zbl 1528.74101
[30] May, S.; Vignollet, J.; de Borst, R., A new arc-length control method based on the rates of the internal and the dissipated energy, Eng. Comput., 33, 1, 100-115 (2016)
[31] Singh, N.; Verhoosel, C.; de Borst, R.; van Brummelen, E., A fracture-controlled path-following technique for phase-field modeling of brittle fracture, Finite Elem. Anal. Des., 113, 14-29 (2016)
[32] Bharali, R.; Goswami, S.; Anitescu, C.; Rabczuk, T., A robust monolithic solver for phase-field fracture integrated with fracture energy based arc-length method and under-relaxation, Comput. Methods Appl. Mech. Engrg., 394, Article 114927 pp. (2022) · Zbl 1507.74374
[33] Navidtehrani, Y.; Betegon, C.; Martinez-Paneda, E., A unified abaqus implementation of the phase field fracture method using only a user material subroutine, Materials, 14, 8 (2021)
[34] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A simple and robust abaqus implementation of the phase field fracture method, Appl. Engrg. Sci., 6, Article 100050 pp. (2021)
[35] Liu, G.; Li, Q.; Msekh, M. A.; Zuo, Z., Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35-47 (2016)
[36] Wu, J.-Y.; Huang, Y.; Nguyen, V. P., On the BFGS monolithic algorithm for the unified phase field damage theory, Comput. Methods Appl. Mech. Engrg., 360, Article 112704 pp. (2020), 23 · Zbl 1441.74196
[37] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[38] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, PAMM, 18, 1, Article e201800353 pp. (2018)
[39] Heister, T.; Wick, T., Pfm-cracks: A parallel-adaptive framework for phase-field fracture propagation, Softw. Impacts, 6, Article 100045 pp. (2020)
[40] Jodlbauer, D.; Langer, U.; Wick, T., Matrix-free multigrid solvers for phase-field fracture problems, Comput. Methods Appl. Mech. Engrg., 372, Article 113431 pp. (2020) · Zbl 1506.74355
[41] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv. Model. Simul. Eng. Sci., 5, 1, 14 (2018)
[42] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput. Methods Appl. Mech. Engrg., 361, Article 112744 pp. (2020) · Zbl 1442.74213
[43] Aldakheel, F.; Noii, N.; Wick, T.; Allix, O.; Wriggers, P., Multilevel global-local techniques for adaptive ductile phase-field fracture, Comput. Methods Appl. Mech. Engrg., 387, Article 114175 pp. (2021) · Zbl 1507.74031
[44] Geelen, R.; Plews, J.; Tupek, M.; Dolbow, J., An extended/generalized phase-field finite element method for crack growth with global-local enrichment, Internat. J. Numer. Methods Engrg., 121, 11, 2534-2557 (2020) · Zbl 07841930
[45] Liu, Z.; Reinoso, J.; Paggi, M., Phase field modeling of brittle fracture in large-deformation solid shells with the efficient quasi-Newton solution and global-local approach, Comput. Methods Appl. Mech. Engrg., 399, Article 115410 pp. (2022) · Zbl 1507.74397
[46] Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T., Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theor. Appl. Fract. Mech., 106, Article 102447 pp. (2020)
[47] Goswami, S.; Yin, M.; Yu, Y.; Karniadakis, G. E., A physics-informed variational deeponet for predicting crack path in quasi-brittle materials, Comput. Methods Appl. Mech. Engrg., 391, Article 114587 pp. (2022) · Zbl 1507.74383
[48] Curtis, F. E.; Han, Z.; Robinson, D. P., A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization, Comput. Optim. Appl., 60, 2, 311-341 (2015) · Zbl 1309.90072
[49] Hüeber, S.; Wohlmuth, B., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 27, 3147-3166 (2005) · Zbl 1093.74056
[50] Popp, A.; Gee, M. W.; Wall, W. A., A finite deformation mortar contact formulation using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 79, 11, 1354-1391 (2009) · Zbl 1176.74133
[51] Schröder, B.; Kuhl, D., A semi-smooth Newton method for dynamic multifield plasticity, PAMM, 16, 1, 767-768 (2016)
[52] A. Mikelić, M. Wheeler, T. Wick, A Phase-Field Approach to the Fluid Filled Fracture Surrounded by a Poroelastic Medium, ICES Report, 2013.
[53] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM - Int. J. Geomath., 10, 1 (2019) · Zbl 1419.74216
[54] Ambrosio, L.; Tortorelli, V. M., Approximation of functional depending on jumps by elliptic functional via t-convergence, Commun. Pure Appl. Math., 43, 8, 999-1036 (1990) · Zbl 0722.49020
[55] Ambrosio, L.; Tortorelli, V. M., On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), 6, 1, 105-123 (1992) · Zbl 0776.49029
[56] Braides, A., Approximation of Free-Discontinuity Problems (1998), Springer: Springer Berlin Heidelberg · Zbl 0909.49001
[57] Engwer, C.; Schumacher, L., A phase field approach to pressurized fractures using discontinuous Galerkin methods, Math. Comput. Simulation, 137, 266-285 (2016) · Zbl 1540.74124
[58] Sommer, L., An Unfitted Discontinuous Galerkin Scheme for a Phase-Field Approximation of Pressurized Fractures (2019), Westfälische Wilhelms-Universität Münster, (Ph.D. thesis) · Zbl 1436.74002
[59] Kolditz, L.; Mang, K., On the relation of gamma-convergence parameters for pressure-driven quasi-static phase-field fracture, Ex. Count., 2, Article 100047 pp. (2022)
[60] Evans, L. C., Partial Differential Equations (2010), American Mathematical Society · Zbl 1194.35001
[61] Kikuchi, N.; Oden, J. T., (Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Stud. Appl. Math., vol. 8 (1988), SIAM: SIAM Philadelphia, PA) · Zbl 0685.73002
[62] Tröltzsch, F., Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints, SIAM J. Optim., 15, 2, 616-634 (2004) · Zbl 1083.49018
[63] Arndt, D.; Bangerth, W.; Feder, M.; Fehling, M.; Gassmöller, R.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Munch, P.; Pelteret, J.-P.; Sticko, S.; Turcksin, B.; Wells, D., The library, version 9.4, J. Numer. Math., 30, 3, 231-246 (2022) · Zbl 07590497
[64] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II finite element library: Design, features, and insights, Comput. Math. Appl., 81, 407-422 (2021) · Zbl 1524.65002
[65] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the trilinos project, ACM Trans. Math. Software, 31, 3, 397-423 (2005) · Zbl 1136.65354
[66] Bergounioux, M.; Haddou, M.; Hintermüller, M.; Kunisch, K., A comparison of a moreau-yosida-based active set strategy and interior point methods for constrained optimal control problems, SIAM J. Optim., 11, 2, 495-521 (2000) · Zbl 1001.49034
[67] Bergounioux, M.; Ito, K.; Kunisch, K., Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37, 4, 1176-1194 (1999) · Zbl 0937.49017
[68] Ito, K.; Kunisch, K., Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces, Nonlinear Anal., 41, 5-6, Ser. A: Theory Methods, 591-616 (2000) · Zbl 0971.49014
[69] Ito, K.; Kunisch, K., Optimal control of elliptic variational inequalities, Appl. Math. Optim., 41, 3, 343-364 (2000) · Zbl 0960.49003
[70] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 3, 865-888 (2003), 2002 · Zbl 1080.90074
[71] Ciarlet, P. G., (The Finite Element Method for Elliptic Problems. The Finite Element Method for Elliptic Problems, Classics Appl. Math., vol. 40 (2002), SIAM: SIAM Philadelphia, PA), Reprint of the 1978 original [North-Holland, Amsterdam] · Zbl 0999.65129
[72] Saad, Y.; Schultz, M. H., Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[73] Kärkkäinen, T.; Kunisch, K.; Tarvainen, P., Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl., 119, 3, 499-533 (2003) · Zbl 1045.49026
[74] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287
[75] Schröder, J.; Wick, T.; Reese, S., A selection of benchmark problems in solid mechanics and applied mathematics, Arch. Comput. Methods Eng., 28, 2, 713-751 (2021)
[76] Sneddon, I. N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 187, 1009, 229-260 (1946)
[77] Sneddon, I. N.; Lowengrub, M., (Crack Problems in the Classical Theory of Elasticity. Crack Problems in the Classical Theory of Elasticity, SIAM Ser. Appl. Meth. (1969), John Wiley and Sons: John Wiley and Sons Philadelphia) · Zbl 0201.26702
[78] Brun, M. K.; Wick, T.; Berre, I.; Nordbotten, J. M.; Radu, F. A., An iterative staggered scheme for phase field brittle fracture propagation with stabilizing parameters, Comput. Methods Appl. Mech. Engrg., 361, Article 112752 pp. (2020) · Zbl 1442.74208
[79] Winkler, B., Traglastuntersuchungen von Unbewehrten und Bewehrten Betonstrukturen auf der Grundlage Eines Objektiven Werkstoffgesetzes für Beton (2001), Innsbruck University Press
[80] Mang, K.; Walloth, M.; Wick, T.; Wollner, W., Adaptive numerical simulation of a phase-field fracture model in mixed form tested on an l-shaped specimen with high Poisson ratios, (Vermolen, F. J.; Vuik, C., Numerical Mathematics and Advanced Applications ENUMATH 2019 (2021), Springer International Publishing: Springer International Publishing Cham), 1185-1193 · Zbl 1475.74111
[81] Mang, K., Phase-Field Fracture Modeling, Numerical Solution, and Simulations for Compressible and Incompressible Solids (2022), Leibniz Universität Hannover, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.