×

Phase field cohesive zone modeling for fatigue crack propagation in quasi-brittle materials. (English) Zbl 1539.74364

Summary: The phase field method has gathered significant attention in the past decade due to its versatile applications in engineering contexts, including fatigue crack propagation modeling. Particularly, the phase field cohesive zone method (PF-CZM) has emerged as a promising approach for modeling fracture behavior in quasi-brittle materials, such as concrete. The present contribution expands the applicability of the PF-CZM to include the modeling of fatigue-induced crack propagation. This study critically examines the validity of the extended PF-CZM approach by evaluating its performance across various fatigue behaviors, encompassing hysteretic behavior, S-N curves, fatigue creep curves, and the Paris law. The experimental investigations and validation span a diverse spectrum of loading scenarios, encompassing pre- and post-peak cyclic loading, as well as low- and high-cyclic fatigue loading. The validation process incorporates 2D and 3D boundary value problems, considering mode I and mixed-modes fatigue crack propagation. The results obtained from this study show a wide range of validity, underscoring the remarkable potential of the proposed PF-CZM approach to accurately capture the propagation of fatigue cracks in concrete-like materials. Furthermore, the paper outlines recommendations to improve the predictive capabilities of the model concerning key fatigue characteristics.

MSC:

74R10 Brittle fracture
74A45 Theories of fracture and damage

Software:

UMAT

References:

[1] Bazant, Z. P.; Xu, K., Size effect in fatigue fracture of concrete, ACI Mater. J., 88, 4, 390-399, 1991
[2] Gan, Y.; Zhang, H.; Zhang, Y.; Xu, Y.; Schlangen, E.; van Breugel, K.; Šavija, B., Experimental study of flexural fatigue behaviour of cement paste at the microscale, Int. J. Fatigue, 151, Article 106378 pp., 2021
[3] Li, D.; Huang, P.; Chen, Z.; Yao, G.; Guo, X.; Zheng, X.; Yang, Y., Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology, Eng. Fract. Mech., 235, Article 107166 pp., 2020
[4] Miarka, P.; Seitl, S.; Bílek, V.; Cifuentes, H., Assessment of fatigue resistance of concrete: S-N curves to the Paris’ law curves, Constr. Build. Mater., 341, Article 127811 pp., 2022
[5] Baktheer, A.; Spartali, H.; Chudoba, R.; Hegger, J., Concrete splitting and tip-bearing effect in the bond of anchored bars tested under fatigue loading in the push-in mode: An experimental investigation, Mater. Struct., 55, 3, 101, 2022
[6] Baluch, M.; Qureshy, A.; Azad, A., Fatigue crack propagation in plain concrete, (Fracture of Concrete and Rock, 1989, Springer), 80-87
[7] Xiao, J.; Li, H.; Yang, Z., Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings, Constr. Build. Mater., 38, 681-688, 2013, 25th Anniversary Session for ACI 228 - Building on the Past for the Future of NDT of Concrete
[8] Jia, M.; Wu, Z.; Yu, R. C.; Zhang, X., Experimental and numerical study on mixed mode I-II fatigue crack propagation in concrete, J. Eng. Mech., 148, 9, Article 04022044 pp., 2022
[9] Becks, H.; Classen, M., Mode II behavior of high-strength concrete under monotonic, cyclic and fatigue loading, Materials, 14, 24, 2021
[10] H. Becks, M. Aguilar, A. Baktheer, R. Chudoba, M. Classen, Experimental and numerical investigations on the fatigue behavior of high-strength concrete under combined shear-compression loading, in: IABSE Proceedings of IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 2022, pp. 532-540.
[11] Paris, P.; Erdogan, F., A critical analysis of crack propagation laws, J. Basic Eng., 1963
[12] Cornelissen, H.; Reinhardt, H., Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading, Mag. Concr. Res., 36, 129, 216-226, 1984
[13] Zhang, B.; Wu, K., Residual fatigue strength and stiffness of ordinary concrete under bending, Cem. Concr. Res., 27, 1, 115-126, 1997
[14] Nguyen, O.; Repetto, E.; Ortiz, M.; Radovitzky, R., A cohesive model of fatigue crack growth, Int. J. Fract., 110, 4, 351-369, 2001
[15] Baktheer, A.; Becks, H., Fracture mechanics based interpretation of the load sequence effect in the flexural fatigue behavior of concrete using digital image correlation, Constr. Build. Mater., 307, Article 124817 pp., 2021
[16] Bazant, Z. P.; Schell, W. F., Fatigue fracture of high-strength concrete and size effect, ACI Mater. J., 90, 472, 1993
[17] Becks, H.; Baktheer, A.; Marx, S.; Classen, M.; Hegger, J.; Chudoba, R., Monitoring concept for the propagation of compressive fatigue in externally prestressed concrete beams using digital image correlation and fiber optic sensors, Fatigue Fract. Eng. Mater. Struct., 46, 2, 514-526, 2023
[18] Gylltoft, K., A fracture mechanics model for fatigue in concrete, Matér. Constr., 17, 1, 55-58, 1984
[19] Hordijk, D. A.; Reinhardt, H. W., Growth of discrete cracks in concrete under fatigue loading, (Shah, S. P., Toughening Mechanisms in Quasi-Brittle Materials, 1991, Springer Netherlands: Springer Netherlands Dordrecht), 541-554
[20] Harper, P. W.; Hallett, S. R., A fatigue degradation law for cohesive interface elements-development and application to composite materials, Int. J. Fatigue, 32, 11, 1774-1787, 2010
[21] Zhaodong, D.; Jie, L., A physically motivated model for fatigue damage of concrete, Int. J. Damage Mech., 27, 8, 1192-1212, 2018
[22] Dekker, R.; van der Meer, F.; Maljaars, J.; Sluys, L., A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading, Internat. J. Numer. Methods Engrg., 118, 10, 561-577, 2019 · Zbl 1543.74086
[23] Xi, X.; Yang, S., A non-linear cohesive zone model for low-cycle fatigue of quasi-brittle materials, Theor. Appl. Fract. Mech., 122, Article 103641 pp., 2022
[24] Parrinello, F.; Benedetti, I., A coupled plasticity-damage cohesive-frictional interface for low-cycle fatigue analysis, Int. J. Mech. Sci., 224, Article 107298 pp., 2022
[25] Kirane, K.; Bažant, Z. P., Microplane damage model for fatigue of quasibrittle materials: Sub-critical crack growth, lifetime and residual strength, Int. J. Fatigue, 70, 93-105, 2015
[26] Baktheer, A.; Goralski, C.; Hegger, J.; Chudoba, R., Stress configuration-based classification of current research on fatigue of reinforced and prestressed concrete, Struct. Concr., 2024
[27] Baktheer, A.; Chudoba, R., Classification and evaluation of phenomenological numerical models for concrete fatigue behavior under compression, Constr. Build. Mater., 221, 661-677, 2019
[28] Basaldella, M.; Jentsch, M.; Oneschkow, N.; Markert, M.; Lohaus, L., Compressive fatigue investigation on high-strength and ultra-high-strength concrete within the SPP 2020, Materials, 15, 11, 3793, 2022
[29] Baktheer, A.; Camps, B.; Hegger, J.; Chudoba, R., Numerical and experimental investigations of concrete fatigue behaviour exposed to varying loading ranges, (Fib Congress. Melbourne, 2018, 2018), 1110-1123, ISBN: 978-1-877040-15-3
[30] Mai, S.; Le-Corre, F.; Foret, G.; Nedjar, B., A continuum damage modeling of quasi-static fatigue strength of plain concrete, Int. J. Fatigue, 37, Supplement C, 79-85, 2012
[31] Titscher, T.; Unger, J. F., Efficient higher-order cycle jump integration of a continuum fatigue damage model, Int. J. Fatigue, 141, Article 105863 pp., 2020
[32] Kindrachuk, V. M.; Thiele, M.; Unger, J. F., Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression, Int. J. Fatigue, 78, 81-94, 2015
[33] Desmorat, R.; Ragueneau, F.; Pham, H., Continuum damage mechanics for hysteresis and fatigue of quasi-brittle materials and structures, Int. J. Numer. Anal. Methods Geomech., 31, 2, 307-329, 2007 · Zbl 1108.74051
[34] Baktheer, A.; Aguilar, M.; Chudoba, R., Microplane fatigue model MS1 for plain concrete under compression with damage evolution driven by cumulative inelastic shear strain, Int. J. Plast., 143, 2021
[35] M. Aguilar, A. Baktheer, R. Chudoba, Numerical Investigation of Load Sequence Effect and Energy Dissipation in Concrete Due to Compressive Fatigue loading Using the New Microplane Fatigue Model MS1, in: E. Onate, D. Peric, M. Chiumenti, E. de Souza Neto (Eds.), COMPLAS 2021, Barcelona, Spain, 2021, http://dx.doi.org/10.23967/complas.2021.053.
[36] Aguilar, M.; Baktheer, A.; Becks, H.; Classen, M.; Chudoba, R., Fatigue-induced concrete fracture under combined compression and shear studied using standard cylinder and refined punch-through shear test setup, (11th International Conference on Fracture Mechanics of Concrete, 2023)
[37] Bažant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128, 11, 1119-1149, 2002
[38] Bažant, Z. P.; Oh, B. H., Crack band theory for fracture of concrete, Matér. Constr., 16, 3, 155-177, 1983
[39] Kröner, E., Interrelations between various branches of continuum mechanics, (Mechanics of Generalized Continua, 1968, Springer), 330-340 · Zbl 0187.48603
[40] Eringen, A.; Edelen, D., On nonlocal elasticity, Internat. J. Engrg. Sci., 10, 3, 233-248, 1972 · Zbl 0247.73005
[41] Peerlings, R. H.; de Borst, R.; Brekelmans, W. M.; de Vree, J., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 19, 3391-3403, 1996 · Zbl 0882.73057
[42] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342, 1998 · Zbl 0966.74060
[43] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826, 2000 · Zbl 0995.74057
[44] Zhou, S.; Zhuang, X.; Zhu, H.; Rabczuk, T., Phase field modelling of crack propagation, branching and coalescence in rocks, Theor. Appl. Fract. Mech., 96, 174-192, 2018
[45] Amirian, B.; Abali, B. E.; Hogan, J. D., The study of diffuse interface propagation of dynamic failure in advanced ceramics using the phase-field approach, Comput. Methods Appl. Mech. Engrg., 405, Article 115862 pp., 2023 · Zbl 1539.74031
[46] Abali, B. E., Phase-field damage modeling in generalized mechanics by using a mixed finite element method (FEM), (Altenbach, H.; Naumenko, K., Creep in Structures VI, 2023, Springer Nature Switzerland: Springer Nature Switzerland Cham), 1-18
[47] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Internat. J. Numer. Methods Engrg., 111, 9, 816-863, 2017 · Zbl 07867126
[48] Dittmann, M.; Aldakheel, F.; Schulte, J.; Wriggers, P.; Hesch, C., Variational phase-field formulation of non-linear ductile fracture, Comput. Methods Appl. Mech. Engrg., 342, 71-94, 2018 · Zbl 1440.74025
[49] Dal, H.; Gültekin, O.; Başdemir, S.; Açan, A. K., Ductile-brittle failure of amorphous glassy polymers: A phase-field approach, Comput. Methods Appl. Mech. Engrg., 401, Article 115639 pp., 2022 · Zbl 1507.74377
[50] Amirian, B.; Jafarzadeh, H.; Abali, B. E.; Reali, A.; Hogan, J. D., Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method, Int. J. Solids Struct., 252, Article 111789 pp., 2022
[51] Zhao, D.; Yin, B.; Storm, J.; Kaliske, M., A phase-field formulation incorporating mode-dependent fracture toughness for fracture modeling in rock-like materials, Eng. Fract. Mech., 289, Article 109345 pp., 2023
[52] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A general framework for decomposing the phase field fracture driving force, particularised to a Drucker-Prager failure surface, Theor. Appl. Fract. Mech., 121, Article 103555 pp., 2022
[53] Schröder, J.; Pise, M.; Brands, D.; Gebuhr, G.; Anders, S., Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation, Comput. Methods Appl. Mech. Engrg., 398, Article 115181 pp., 2022 · Zbl 1507.74416
[54] Cui, C.; Ma, R.; Martínez-Pañeda, E., A phase field formulation for dissolution-driven stress corrosion cracking, J. Mech. Phys. Solids, 147, Article 104254 pp., 2021
[55] Ai, W.; Wu, B.; Martínez-Pañeda, E., A multi-physics phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles, J. Power Sources, 544, Article 231805 pp., 2022
[56] Aldakheel, F.; Kandekar, C.; Bensmann, B.; Dal, H.; Hanke-Rauschenbach, R., Electro-chemo-mechanical induced fracture modeling in proton exchange membrane water electrolysis for sustainable hydrogen production, Comput. Methods Appl. Mech. Engrg., 400, Article 115580 pp., 2022 · Zbl 1507.74030
[57] Aldakheel, F., A microscale model for concrete failure in poro-elasto-plastic media, Theor. Appl. Fract. Mech., 107, Article 102517 pp., 2020
[58] Ulloa, J.; Noii, N.; Alessi, R.; Aldakheel, F.; Degrande, G.; François, S., Variational modeling of hydromechanical fracture in saturated porous media: A micromechanics-based phase-field approach, Comput. Methods Appl. Mech. Engrg., 396, Article 115084 pp., 2022 · Zbl 1507.74422
[59] Heider, Y., A review on phase-field modeling of hydraulic fracturing, Eng. Fract. Mech., 253, Article 107881 pp., 2021
[60] Martínez-Pañeda, E.; Golahmar, A.; Niordson, C. F., A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 342, 742-761, 2018 · Zbl 1440.82005
[61] Golahmar, A.; Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for hydrogen-assisted fatigue, Int. J. Fatigue, 154, Article 106521 pp., 2022
[62] Khalil, Z.; Elghazouli, A. Y.; Martínez-Pañeda, E., A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver, Comput. Methods Appl. Mech. Engrg., 388, Article 114286 pp., 2022 · Zbl 1507.74081
[63] Yan, S.; Schreiber, C.; Müller, R., An efficient implementation of a phase field model for fatigue crack growth, Int. J. Fract., 1-14, 2022
[64] Kalina, M.; Schöne, V.; Spak, B.; Paysan, F.; Breitbarth, E.; Kästner, M., Fatigue crack growth in anisotropic aluminium sheets — phase-field modelling and experimental validation, Int. J. Fatigue, 176, Article 107874 pp., 2023
[65] Feng, D.-C.; Wu, J.-Y., Phase-field regularized cohesive zone model (CZM) and size effect of concrete, Eng. Fract. Mech., 197, 66-79, 2018
[66] Yu, K.; Yang, Z.; Li, H.; Tat Ooi, E.; Li, S.; Liu, G., A mesoscale modelling approach coupling SBFEM, continuous damage phase-field model and discrete cohesive crack model for concrete fracture, Eng. Fract. Mech., 278, Article 109030 pp., 2023
[67] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32, 2016
[68] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311, 2010 · Zbl 1202.74014
[69] Lorentz, E.; Godard, V., Gradient damage models: Toward full-scale computations, Comput. Methods Appl. Mech. Engrg., 200, 21, 1927-1944, 2011 · Zbl 1228.74006
[70] Chudoba, R.; Vořechovský, M.; Aguilar, M.; Baktheer, A., Coupled sliding-decohesion-compression model for a consistent description of monotonic and fatigue behavior of material interfaces, Comput. Methods Appl. Mech. Engrg., 398, Article 115259 pp., 2022 · Zbl 1507.74043
[71] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A simple and robust Abaqus implementation of the phase field fracture method, Appl. Eng. Sci., 6, Article 100050 pp., 2021
[72] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405, 2015 · Zbl 1398.74270
[73] Alessi, R.; Ulloa, J., Endowing Griffith’s fracture theory with the ability to describe fatigue cracks, Eng. Fract. Mech., 281, Article 109048 pp., 2023
[74] Kalina, M.; Schneider, T.; Brummund, J.; Kästner, M., Overview of phase-field models for fatigue fracture in a unified framework, Eng. Fract. Mech., 288, Article 109318 pp., 2023
[75] Baktheer, A., ABAQUS subroutines for the simulation of fatigue crack propagation in quasi-brittle materials using phase field cohesive zone approach, Mendeley Data, V1, 2024
[76] Msekh, M. A.; Sargado, J. M.; Jamshidian, M.; Areias, P. M.; Rabczuk, T., Abaqus implementation of phase-field model for brittle fracture, Comput. Mater. Sci., 96, 472-484, 2015, Special Issue Polymeric Composites
[77] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370-386, 2019
[78] . fib Model Code 2010, fib Model Code for concrete structures, international federation for structural concrete. http://dx.doi.org/10.1002/9783433604090.
[79] Hai, L.; Li, J., A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials, Eng. Fract. Mech., 252, Article 107847 pp., 2021
[80] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., An assessment of phase field fracture: Crack initiation and growth, Phil. Trans. R. Soc. A, 379, Article 20210021 pp., 2021
[81] Cornelissen, H.; Hordijk, D.; Reinhardt, H., Experimental determination of crack softening characteristics of normalweight and lightweight, Heron, 31, 2, 45-46, 1986
[82] Aguilar, M.; Baktheer, A.; Chudoba, R., On the energy dissipation in confined concrete subjected to shear cyclic loading, Proc. Appl. Math. Mech., 22, 1, Article e202200301 pp., 2023
[83] Alliche, A., Damage model for fatigue loading of concrete, Int. J. Fatigue, 26, 9, 915-921, 2004 · Zbl 1107.74335
[84] Seemab, F.; Schmidt, M.; Baktheer, A.; Classen, M.; Chudoba, R., Automated detection of propagating cracks in RC beams without shear reinforcement based on DIC-controlled modeling of damage localization, Eng. Struct., 286, Article 116118 pp., 2023
[85] Baktheer, A.; Aguilar, M.; Chudoba, R.; Vořechovskỳ, M., Monotonic and fatigue behavior of cementitious composites modeled via a coupled sliding-decohesion-compression interface model, (Computational Modelling of Concrete and Concrete Structures, 2022, CRC Press: CRC Press Vienna, Austria), 510-519
[86] Jia, M.; Wu, Z.; Yu, R. C.; Zhang, X., Experimental investigation of mixed mode I-II fatigue crack propagation in concrete using a digital image correlation method, Eng. Fract. Mech., 272, Article 108712 pp., 2022
[87] Kristensen, P. K.; Golahmar, A.; Martínez-Pañeda, E.; Niordson, C. F., Accelerated high-cycle phase field fatigue predictions, Eur. J. Mech. / A Solids, 100, Article 104991 pp., 2023 · Zbl 1525.74180
[88] Hageman, T.; Martínez-Pañeda, E., A phase field-based framework for electro-chemo-mechanical fracture: Crack-contained electrolytes, chemical reactions and stabilisation, Comput. Methods Appl. Mech. Engrg., 415, Article 116235 pp., 2023 · Zbl 1539.74371
[89] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech., 190, 53-73, 2018
[90] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput. Methods Appl. Mech. Engrg., 361, Article 112731 pp., 2020 · Zbl 1442.74195
[91] Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P., A general phase-field model for fatigue failure in brittle and ductile solids, Comput. Mech., 1-22, 2021
[92] Schreiber, C.; Müller, R.; Kuhn, C., Phase field simulation of fatigue crack propagation under complex load situations, Arch. Appl. Mech., 91, 2, 563-577, 2021
[93] Ulloa, J.; Wambacq, J.; Alessi, R.; Degrande, G.; François, S., Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation, Comput. Methods Appl. Mech. Engrg., 373, Article 113473 pp., 2021 · Zbl 1506.74342
[94] Aldakheel, F.; Schreiber, C.; Müller, R.; Wriggers, P., Phase-field modeling of fatigue crack propagation in brittle materials, (Aldakheel, F.; Hudobivnik, B.; Soleimani, M.; Wessels, H.; Weißenfels, C.; Marino, M., Current Trends and Open Problems in Computational Mechanics, 2022, Springer International Publishing: Springer International Publishing Cham), 15-22 · Zbl 1516.74091
[95] Wu, J.-Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99, 2017
[96] Wu, J.-Y.; Huang, Y.; Zhou, H.; Nguyen, V. P., Three-dimensional phase-field modeling of mode I + II/III failure in solids, Comput. Methods Appl. Mech. Engrg., 373, Article 113537 pp., 2021 · Zbl 1506.74370
[97] Korec, E.; Jirásek, M.; Wong, H. S.; Martínez-Pañeda, E., A phase-field chemo-mechanical model for corrosion-induced cracking in reinforced concrete, Constr. Build. Mater., 393, Article 131964 pp., 2023
[98] Fang, X.; Pan, Z.; Ma, R.; chen, A., A multi-phase-field framework for non-uniform corrosion and corrosion-induced concrete cracking, Comput. Methods Appl. Mech. Engrg., 414, Article 116196 pp., 2023 · Zbl 1539.74369
[99] Ragueneau, F.; Dominguez, N.; Ibrahimbegović, A., Thermodynamic-based interface model for cohesive brittle materials: Application to bond slip in RC structures, Comput. Methods Appl. Mech. Engrg., 195, 52, 7249-7263, 2006 · Zbl 1331.74169
[100] Mandal, T. K.; Nguyen, V. P.; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study, Eng. Fract. Mech., 207, 48-67, 2019
[101] Kristensen, P. K.; Martínez-Pañeda, E., Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme, Theor. Appl. Fract. Mech., 107, Article 102446 pp., 2020
[102] J. Wu, M. Cervera, Strain localization in elastoplastic damage solids, in: Proceeding of International Symposium on Innovation & Sustainability of Structures in Civil Engineering, ISISS-2013, Harbin, China, 2013.
[103] Wu, J.-Y.; Nguyen, V. P.; Zhou, H.; Huang, Y., A variationally consistent phase-field anisotropic damage model for fracture, Comput. Methods Appl. Mech. Engrg., 358, Article 112629 pp., 2020 · Zbl 1441.74220
[104] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A unified Abaqus implementation of the phase field fracture method using only a user material subroutine, Materials, 14, 8, 2021
[105] Hirshikesh, R.; Natarajan, S.; Annabattula, R. K.; Martínez-Pañeda, E., Phase field modelling of crack propagation in functionally graded materials, Composites B, 169, 239-248, 2019
[106] Cui, C.; Ma, R.; Martínez-Pañeda, E., A generalised, multi-phase-field theory for dissolution-driven stress corrosion cracking and hydrogen embrittlement, J. Mech. Phys. Solids, 166, Article 104951 pp., 2022
[107] Marigo, J., Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Eng. Fract. Mech., 21, 4, 861-874, 1985
[108] Golahmar, A.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for high-cycle fatigue: Total-life analysis, Int. J. Fatigue, 170, Article 107558 pp., 2023
[109] Pillai, U.; Heider, Y.; Markert, B., A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine, Comput. Mater. Sci., 153, 36-47, 2018
[110] Baktheer, A.; Chudoba, R., Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete, Mater. Struct., 54, 2, 82, 2021
[111] Aldakheel, F., A microscale model for concrete failure in poro-elasto-plastic media, Theor. Appl. Fract. Mech., 107, Article 102517 pp., 2020
[112] Aldakheel, F.; Noii, N.; Wick, T.; Allix, O.; Wriggers, P., Multilevel global-local techniques for adaptive ductile phase-field fracture, Comput. Methods Appl. Mech. Engrg., 387, Article 114175 pp., 2021 · Zbl 1507.74031
[113] Baktheer, A.; Aguilar, M.; Hegger, J.; Chudoba, R., Microplane damage plastic model for plain concrete subjected to compressive fatigue loading, (10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-X, 2019)
[114] Chen, H.; Liu, D., Fracture and damage properties of high-strength concrete under cyclic loading, Constr. Build. Mater., 360, Article 129494 pp., 2022
[115] Benedetti, I.; Gulizzi, V., A grain-scale model for high-cycle fatigue degradation in polycrystalline materials, Int. J. Fatigue, 116, 90-105, 2018
[116] Lo Cascio, M.; Milazzo, A.; Benedetti, I., A hybrid virtual-boundary element formulation for heterogeneous materials, Int. J. Mech. Sci., 199, Article 106404 pp., 2021
[117] Parrinello, F.; Gulizzi, V.; Benedetti, I., A computational framework for low-cycle fatigue in polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 383, Article 113898 pp., 2021 · Zbl 1506.74081
[118] Yin, B.; Kaliske, M., Fatigue phase-field modeling for elastomeric materials, PAMM, 22, 1, Article e202100150 pp., 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.