×

Unsupervised discovery of interpretable hyperelastic constitutive laws. (English) Zbl 1506.74051

Summary: We propose a new approach for data-driven automated discovery of isotropic hyperelastic constitutive laws. The approach is unsupervised, i.e., it requires no stress data but only displacement and global force data, which are realistically available through mechanical testing and digital image correlation techniques; it delivers interpretable models, i.e., models that are embodied by parsimonious mathematical expressions discovered through sparse regression of a large catalogue of candidate functions; it is one-shot, i.e., discovery only needs one experiment – but can use more if available. The problem of unsupervised discovery is solved by enforcing equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity of the solution is achieved by \(\ell_p\) regularization combined with thresholding, which calls for a non-linear optimization scheme. The ensuing fully automated algorithm leverages physics-based constraints for the automatic determination of the penalty parameter in the regularization term. Using numerically generated data including artificial noise, we demonstrate the ability of the approach to accurately discover five hyperelastic models of different complexity. We also show that, if a “true” feature is missing in the function library, the proposed approach is able to surrogate it in such a way that the actual response is still accurately predicted.

MSC:

74B20 Nonlinear elasticity
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
68T05 Learning and adaptive systems in artificial intelligence
74A20 Theory of constitutive functions in solid mechanics

Software:

DiffSharp; F3DAM; SINDy

References:

[1] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782516300238 · Zbl 1425.74503
[2] Ibañez, R.; Borzacchiello, D.; Aguado, J. V.; Abisset-Chavanne, E.; Cueto, E.; Ladeveze, P.; Chinesta, F., Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech., 60, 813-826 (2017) · Zbl 1387.74015
[3] Nguyen, L. T.K.; Keip, M. A., A data-driven approach to nonlinear elasticity, Comput. Struct., 194, 97-115 (2018), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794917301311
[4] Conti, S.; Müller, S.; Ortiz, M., Data-driven problems in elasticity, Arch. Ration. Mech. Anal., 229, 79-123 (2018) · Zbl 1402.35276
[5] Kirchdoerfer, T.; Ortiz, M., Data-driven computing in dynamics: Data-driven computing in dynamics, Internat. J. Numer. Methods Engrg., 113, 1697-1710 (2018) · Zbl 07868547
[6] Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M., Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-99 (2019), URL: http://arxiv.org/abs/1808.10859, arXiv: 1808.10859 · Zbl 1441.74048
[7] Carrara, P.; De Lorenzis, L.; Stainier, L.; Ortiz, M., Data-driven fracture mechanics (2020), arXiv:2006.03133 [cs] URL: http://arxiv.org/abs/2006.03133. arXiv: 2006.03133 · Zbl 1506.74347
[8] Ibañez, R.; Abisset-Chavanne, E.; Aguado, J. V.; Gonzalez, D.; Cueto, E.; Chinesta, F., A manifold learning approach to data-driven computational elasticity and inelasticity, Arch. Comput. Methods Eng., 25, 47-57 (2018) · Zbl 1390.74195
[9] González, D.; Chinesta, F.; Cueto, E., Thermodynamically consistent data-driven computational mechanics, Contin. Mech. Thermodyn., 31, 239-253 (2019)
[10] Ibáñez, R.; Abisset-Chavanne, E.; González, D.; Duval, J. L.; Cueto, E.; Chinesta, F., Hybrid constitutive modeling: data-driven learning of corrections to plasticity models, Int. J. Mater. Form., 12, 717-725 (2019)
[11] González, D.; Chinesta, F.; Cueto, E., Learning corrections for hyperelastic models from data, Front. Mater., 6, 14 (2019), URL: https://www.frontiersin.org/article/10.3389/fmats.2019.00014/full
[12] Sussman, T.; Bathe, K. J., A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data, Commun. Numer. Methods. Eng., 25, 53-63 (2009) · Zbl 1156.74008
[13] Crespo, J.; Latorre, M.; Montáns, F. J., WYPIWYG hyperelasticity for isotropic, compressible materials, Comput. Mech., 59, 73-92 (2017) · Zbl 1398.74023
[14] Ghaboussi, J.; Garrett, J. H.; Wu, X., Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 132-153 (1991), URL: http://ascelibrary.org/doi/10.1061/
[15] Lefik, M.; Schrefler, B., Artificial neural network as an incremental non-linear constitutive model for a finite element code, Comput. Methods Appl. Mech. Engrg., 192, 3265-3283 (2003), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782503003505 · Zbl 1054.74731
[16] Shen, Y.; Chandrashekhara, K.; Breig, W.; Oliver, L., Finite element analysis of V-ribbed belts using neural network based hyperelastic material model, Int. J. Non-Linear Mech., 40, 875-890 (2005), URL: https://linkinghub.elsevier.com/retrieve/pii/S0020746204001635 · Zbl 1349.74280
[17] Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M. A., Deep learning predicts path-dependent plasticity, Proc. Natl. Acad. Sci., 116, 26414-26420 (2019), URL: https://www.pnas.org/content/116/52/26414, arXiv:https://www.pnas.org/content/116/52/26414.full.pdf
[18] Kumar, S.; Tan, S.; Zheng, L.; Kochmann, D. M., Inverse-designed spinodoid metamaterials, npj Comput. Mater., 6, 73 (2020)
[19] Huang, D. Z.; Xu, K.; Farhat, C.; Darve, E., Learning constitutive relations from indirect observations using deep neural networks, J. Comput. Phys., 416, Article 109491 pp. (2020), URL: https://linkinghub.elsevier.com/retrieve/pii/S0021999120302655 · Zbl 1437.65192
[20] Hashin, Z., Analysis of composite materials—A survey, J. Appl. Mech., 50, 481-505 (1983) · Zbl 0542.73092
[21] Yuan, Z.; Fish, J., Toward realization of computational homogenization in practice, Internat. J. Numer. Methods Engrg., 73, 361-380 (2008) · Zbl 1159.74044
[22] Wang, K.; Sun, W., A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Engrg., 334, 337-380 (2018), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782518300380 · Zbl 1440.74130
[23] Leygue, A.; Coret, M.; Réthoré, J.; Stainier, L.; Verron, E., Data-based derivation of material response, Comput. Methods Appl. Mech. Engrg., 331, 184-196 (2018), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782517307156 · Zbl 1439.74050
[24] Dalémat, M., Measuring stress field without constitutive equation, Mech. Mater., 9 (2019)
[25] Tartakovsky, A. M.; Marrero, C. O.; Perdikaris, P.; Tartakovsky, G. D.; Barajas-Solano, D., Learning parameters and constitutive relationships with physics informed deep neural networks (2018), arXiv:1808.03398 [physics] URL: http://arxiv.org/abs/1808.03398, arXiv: 1808.03398
[26] Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R., A deep learning framework for solution and discovery in solid mechanics (2020), arXiv:2003.02751 [cs, stat] URL: http://arxiv.org/abs/2003.02751. arXiv: 2003.02751
[27] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019), URL: https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125 · Zbl 1415.68175
[28] Schmidt, M.; Lipson, H., Distilling free-form natural laws from experimental data, Science, 324, 81-85 (2009)
[29] Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113, 3932-3937 (2016) · Zbl 1355.94013
[30] Loiseau, J. C.; Brunton, S. L., Constrained sparse Galerkin regression (2016), arXiv:1611.03271 [physics] URL: http://arxiv.org/abs/1611.03271, arXiv: 1611.03271
[31] Zhang, S.; Lin, G., Robust data-driven discovery of governing physical laws with error bars, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 474, Article 20180305 pp. (2018) · Zbl 1407.62267
[32] Champion, K.; Lusch, B.; Kutz, J. N.; Brunton, S. L., Data-driven discovery of coordinates and governing equations, Proc. Natl. Acad. Sci., 116, 22445-22451 (2019) · Zbl 1433.68396
[33] Hoffmann, M.; Fröhner, C.; Noé, F., Reactive SINDy: Discovering governing reactions from concentration data, J. Chem. Phys., 150, Article 025101 pp. (2019)
[34] Lai, Z.; Nagarajaiah, S., Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior, Mech. Syst. Signal Process., 117, 813-842 (2019), URL: https://linkinghub.elsevier.com/retrieve/pii/S0888327018305727
[35] Wu, K., Numerical aspects for approximating governing equations using data, J. Comput. Phys., 22 (2019) · Zbl 1451.65008
[36] Huang, Z.; Tian, Y.; Li, C.; Lin, G.; Wu, L.; Wang, Y.; Jiang, H., Data-driven automated discovery of variational laws hidden in physical systems, J. Mech. Phys. Solids, 137, Article 103871 pp. (2020), URL: https://linkinghub.elsevier.com/retrieve/pii/S0022509619306246
[37] Schaeffer, H.; Tran, G.; Ward, R.; Zhang, L., Extracting structured dynamical systems using sparse optimization with very few samples, Multiscale Model. Simul., 18, 1435-1461 (2020) · Zbl 1528.65035
[38] Wang, Z.; Estrada, J.; Arruda, E.; Garikipati, K., Discovery of deformation mechanisms and constitutive response of soft material surrogates of biological tissue by full-field characterization and data-driven variational system identification (2020), bioRxiv
[39] Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Data-driven discovery of partial differential equations, Sci. Adv., 3, Article e1602614 pp. (2017)
[40] Schaeffer, H., Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 473, Article 20160446 pp. (2017) · Zbl 1404.35397
[41] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, 43 (2017) · Zbl 06982909
[42] Berg, J.; Nyström, K., Data-driven discovery of PDEs in complex datasets, J. Comput. Phys., 384, 239-252 (2019), URL: http://arxiv.org/abs/1808.10788, arXiv: 1808.10788 · Zbl 1451.68239
[43] Both, G. J.; Choudhury, S.; Sens, P.; Kusters, R., DeepMoD: Deep learning for model discovery in noisy data (2019), arXiv:1904.09406 [physics, q-bio, stat] URL: http://arxiv.org/abs/1904.09406, arXiv: 1904.09406
[44] Chen, Z.; Liu, Y.; Sun, H., Deep learning of physical laws from scarce data (2020), arXiv:2005.03448 [physics, stat] URL: http://arxiv.org/abs/2005.03448. arXiv: 2005.03448
[45] Hartmann, S., Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests, Acta Mech., 148, 129-155 (2001) · Zbl 0996.74012
[46] Marckmann, G.; Verron, E., Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol., 79, 835-858 (2006), URL: https://meridian.allenpress.com/rct/article/79/5/835/93139/Comparison-of-Hyperelastic-Models-for-RubberLike
[47] Bower, A. F., Applied Mechanics of Solids (2009), CRC press
[48] Gent, A. N.; Thomas, A. G., Forms for the stored (strain) energy function for vulcanized rubber, J. Polym. Sci., 28, 625-628 (1958)
[49] Treloar, L. R.G., The elasticity of a network of long-chain molecules - ii, Trans. Faraday Soc., 39, 241-246 (1943)
[50] Isihara, A.; Hashitsume, N.; Tatibana, M., Statistical theory of rubber like elasticity. iv. (two dimensional stretching), J. Chem. Phys., 19, 1508-1512 (1951)
[51] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412 (1993), URL: https://www.sciencedirect.com/science/article/pii/0022509693900136 · Zbl 1355.74020
[52] Biderman, V., Calculations of rubber parts (in russian), Raschet. Prochnost, 40 (1958)
[53] Haines, D.; Wilson, W., Strain-energy density function for rubberlike materials, J. Mech. Phys. Solids, 27, 345-360 (1979), URL: http://www.sciencedirect.com/science/article/pii/0022509679900346 · Zbl 0425.73031
[54] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 337-403 (1976) · Zbl 0368.73040
[55] Grédiac, M.; Pierron, F.; Avril, S.; Toussaint, E., The virtual fields method for extracting constitutive parameters from full-field measurements: a review, Strain, 42, 233-253 (2008)
[56] Tayeb, A.; Le Cam, J. B.; Robin, E.; Canévet, F.; Grédiac, M.; Toussaint, E.; Balandraud, X., Sensitivity based virtual fields for identifying hyperelastic constitutive parameters, (11th European Conference on Constitutive Models for Rubber (2019), CRC Press/Balkema: CRC Press/Balkema Nantes, France), 163-168, URL: https://hal-univ-rennes1.archives-ouvertes.fr/hal-02499976
[57] Tibshirani, R., Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267-288 (1996) · Zbl 0850.62538
[58] Frank, l. E.; Friedman, J. H., A statistical view of some chemometrics regression tools, Technometrics, 35, 109-135 (1993) · Zbl 0775.62288
[59] Wang, R.; Xiu, N.; Zhou, S., Fast Newton method for sparse logistic regression (2019), arXiv:1901.02768 [math] URL: http://arxiv.org/abs/1901.02768, arXiv: 1901.02768
[60] Schreier, H.; Orteu, J. J.; Sutton, M. A., Image Correlation for Shape, Motion and Deformation Measurements (2009), Springer US: Springer US Boston, MA
[61] Bonnet, M.; Constantinescu, A., Inverse problems in elasticity, Inverse Problems, 21, R1-R50 (2005) · Zbl 1070.35118
[62] Saunders, C.; Gammerman, A.; Vovk, V., Ridge regression learning algorithm in dual variables, (In Proceedings of the 15th International Conference on Machine Learning (1998), Morgan Kaufmann), 515-521
[63] Theodoridis, S.; Koutroumbas, K., Pattern Recognition (2009), Academic Press: Academic Press Burlington, Mass
[64] Rasmussen, C. E.; Williams, C. K.I., Gaussian Processes for Machine Learning (2006), MIT Press: MIT Press Cambridge, Mass · Zbl 1177.68165
[65] G. Gundersen, 2020, URL: https://gregorygundersen.com/blog/2020/01/06/kernel-gp-regression/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.