×

Metric statistics: exploration and inference for random objects with distance profiles. (English) Zbl 1539.62359

Summary: This article provides an overview on the statistical modeling of complex data as increasingly encountered in modern data analysis. It is argued that such data can often be described as elements of a metric space that satisfies certain structural conditions and features a probability measure. We refer to the random elements of such spaces as random objects and to the emerging field that deals with their statistical analysis as metric statistics. Metric statistics provides methodology, theory and visualization tools for the statistical description, quantification of variation, centrality and quantiles, regression and inference for populations of random objects, inferring these quantities from available data and samples. In addition to a brief review of current concepts, we focus on distance profiles as a major tool for object data in conjunction with the pairwise Wasserstein transports of the underlying one-dimensional distance distributions. These pairwise transports lead to the definition of intuitive and interpretable notions of transport ranks and transport quantiles as well as two-sample inference. An associated profile metric complements the original metric of the object space and may reveal important features of the object data in data analysis. We demonstrate these tools for the analysis of complex data through various examples and visualizations.

MSC:

62R20 Statistics on metric spaces
62R10 Functional data analysis

Software:

R; fdadensity; GitHub; ODP; frechet

References:

[1] Ahidar-Coutrix, A., Le Gouic, T. and Paris, Q. (2020). Convergence rates for empirical barycenters in metric spaces: Curvature, convexity and extendable geodesics. Probab. Theory Related Fields 177 323-368. Digital Object Identifier: 10.1007/s00440-019-00950-0 Google Scholar: Lookup Link MathSciNet: MR4095017 · Zbl 1442.51004 · doi:10.1007/s00440-019-00950-0
[2] AITCHISON, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. CRC Press, London. Digital Object Identifier: 10.1007/978-94-009-4109-0 Google Scholar: Lookup Link MathSciNet: MR0865647 · Zbl 0688.62004 · doi:10.1007/978-94-009-4109-0
[3] AMBROSIO, L., GIGLI, N. and SAVARÉ, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. MathSciNet: MR2401600 · Zbl 1145.35001
[4] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509-512. Digital Object Identifier: 10.1126/science.286.5439.509 Google Scholar: Lookup Link MathSciNet: MR2091634 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[5] BARDEN, D., LE, H. and OWEN, M. (2018). Limiting behaviour of Fréchet means in the space of phylogenetic trees. Ann. Inst. Statist. Math. 70 99-129. Digital Object Identifier: 10.1007/s10463-016-0582-9 Google Scholar: Lookup Link MathSciNet: MR3742820 · Zbl 1394.62153 · doi:10.1007/s10463-016-0582-9
[6] BHATTACHARJEE, S., LI, B. and XUE, L. (2023). Nonlinear global Fréchet regression for random objects via weak conditional expectation. arXiv preprint. Available at arXiv:2310.07817.
[7] BHATTACHARJEE, S. and MÜLLER, H.-G. (2023). Single index Fréchet regression. Ann. Statist. 51 1770-1798. Digital Object Identifier: 10.1214/23-aos2307 Google Scholar: Lookup Link MathSciNet: MR4658576 · Zbl 1539.62357 · doi:10.1214/23-aos2307
[8] Bigot, J., Gouet, R., Klein, T. and López, A. (2017). Geodesic PCA in the Wasserstein space by convex PCA. Ann. Inst. Henri Poincaré Probab. Stat. 53 1-26. Digital Object Identifier: 10.1214/15-AIHP706 Google Scholar: Lookup Link MathSciNet: MR3606732 · Zbl 1362.62065 · doi:10.1214/15-AIHP706
[9] BILLARD, L. and DIDAY, E. (2003). From the statistics of data to the statistics of knowledge: Symbolic data analysis. J. Amer. Statist. Assoc. 98 470-487. Digital Object Identifier: 10.1198/016214503000242 Google Scholar: Lookup Link MathSciNet: MR1982575 · doi:10.1198/016214503000242
[10] Billera, L. J., Holmes, S. P. and Vogtmann, K. (2001). Geometry of the space of phylogenetic trees. Adv. in Appl. Math. 27 733-767. Digital Object Identifier: 10.1006/aama.2001.0759 Google Scholar: Lookup Link MathSciNet: MR1867931 · Zbl 0995.92035 · doi:10.1006/aama.2001.0759
[11] BISWAL, B., YETKIN, F. Z., HAUGHTON, V. M. and HYDE, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 537-541. Digital Object Identifier: 10.1002/mrm.1910340409 Google Scholar: Lookup Link · doi:10.1002/mrm.1910340409
[12] Blei, R., Gao, F. and Li, W. V. (2007). Metric entropy of high dimensional distributions. Proc. Amer. Math. Soc. 135 4009-4018. Digital Object Identifier: 10.1090/S0002-9939-07-08935-6 Google Scholar: Lookup Link MathSciNet: MR2341952 · Zbl 1147.46018 · doi:10.1090/S0002-9939-07-08935-6
[13] Bolstad, B. M., Irizarry, R. A., Åstrand, M. and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 185-193.
[14] Burago, D., Burago, Y. and Ivanov, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/gsm/033 Google Scholar: Lookup Link MathSciNet: MR1835418 · doi:10.1090/gsm/033
[15] CHAVEL, I. (2006). Riemannian Geometry: A Modern Introduction, 2nd ed. Cambridge Studies in Advanced Mathematics 98. Cambridge Univ. Press, Cambridge. Digital Object Identifier: 10.1017/CBO9780511616822 Google Scholar: Lookup Link MathSciNet: MR2229062 · doi:10.1017/CBO9780511616822
[16] CHEN, H. and FRIEDMAN, J. H. (2017). A new graph-based two-sample test for multivariate and object data. J. Amer. Statist. Assoc. 112 397-409. Digital Object Identifier: 10.1080/01621459.2016.1147356 Google Scholar: Lookup Link MathSciNet: MR3646580 · doi:10.1080/01621459.2016.1147356
[17] CHEN, K., DELICADO, P. and MÜLLER, H.-G. (2017). Modelling function-valued stochastic processes, with applications to fertility dynamics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 177-196. Digital Object Identifier: 10.1111/rssb.12160 Google Scholar: Lookup Link MathSciNet: MR3597969 · Zbl 1414.62208 · doi:10.1111/rssb.12160
[18] CHEN, Y., DUBEY, P. and MÜLLER, H.-G. (2024). ODP: Exploration for random objects using distance profiles R package version 0.1.0. Available at https://github.com/yqgchen/ODP.
[19] CHEN, Y., GAJARDO, A., FAN, J., ZHONG, Q., DUBEY, P., HAN, K., BHATTACHARJEE, S. and MÜLLER, H.-G. (2020). frechet: Statistical analysis for random objects and non-Euclidean data. R package version 0.2.0. Available at https://CRAN.R-project.org/package=frechet.
[20] CHEN, H., and MÜLLER, H.-G. (2023). Sliced Wasserstein regression. arXiv preprint. Available at arXiv:2306.10601.
[21] CHEN, Y., LIN, Z. and MÜLLER, H.-G. (2023). Wasserstein regression. J. Amer. Statist. Assoc. 118 869-882. Digital Object Identifier: 10.1080/01621459.2021.1956937 Google Scholar: Lookup Link MathSciNet: MR4595462 · Zbl 07707208 · doi:10.1080/01621459.2021.1956937
[22] CHEN, Y. and MÜLLER, H.-G. (2022). Uniform convergence of local Fréchet regression with applications to locating extrema and time warping for metric space valued trajectories. Ann. Statist. 50 1573-1592. Digital Object Identifier: 10.1214/21-aos2163 Google Scholar: Lookup Link MathSciNet: MR4441132 · Zbl 1539.62102 · doi:10.1214/21-aos2163
[23] Cheng, M.-Y. and Wu, H.-T. (2013). Local linear regression on manifolds and its geometric interpretation. J. Amer. Statist. Assoc. 108 1421-1434. Digital Object Identifier: 10.1080/01621459.2013.827984 Google Scholar: Lookup Link MathSciNet: MR3174718 · Zbl 1426.62402 · doi:10.1080/01621459.2013.827984
[24] CHOLAQUIDIS, A., FRAIMAN, R. and MORENO, L. (2023). Level sets of depth measures in abstract spaces. TEST 32 942-957. Digital Object Identifier: 10.1007/s11749-023-00858-x Google Scholar: Lookup Link MathSciNet: MR4656906 · Zbl 1527.62104 · doi:10.1007/s11749-023-00858-x
[25] Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 463-482. Digital Object Identifier: 10.1111/rssb.12169 Google Scholar: Lookup Link MathSciNet: MR3611755 · Zbl 1414.62177 · doi:10.1111/rssb.12169
[26] Cuturi, M. (2013). Sinkhorn distances: lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems 2292-2300.
[27] DABO-NIANG, S. (2002). Estimation de la densité dans un espace de dimension infinie: Application aux diffusions. C. R. Math. Acad. Sci. Paris 334 213-216. Digital Object Identifier: 10.1016/S1631-073X(02)02247-1 Google Scholar: Lookup Link MathSciNet: MR1891061 · Zbl 0999.62028 · doi:10.1016/S1631-073X(02)02247-1
[28] DAI, X. (2022). Statistical inference on the Hilbert sphere with application to random densities. Electron. J. Stat. 16 700-736. Digital Object Identifier: 10.1214/21-ejs1942 Google Scholar: Lookup Link MathSciNet: MR4366819 · Zbl 1493.62242 · doi:10.1214/21-ejs1942
[29] DAI, X., LIN, Z. and MÜLLER, H.-G. (2021). Modeling sparse longitudinal data on Riemannian manifolds. Biometrics 77 1328-1341. Digital Object Identifier: 10.1111/biom.13385 Google Scholar: Lookup Link MathSciNet: MR4357841 · Zbl 1520.62173 · doi:10.1111/biom.13385
[30] DAI, X. and LOPEZ-PINTADO, S. (2023). Tukey’s depth for object data. J. Amer. Statist. Assoc. 118 1760-1772. Authors writing for the Alzheimer’s Disease Neuroimaging Initiative. Digital Object Identifier: 10.1080/01621459.2021.2011298 Google Scholar: Lookup Link MathSciNet: MR4646604 · Zbl 07751806 · doi:10.1080/01621459.2021.2011298
[31] DONG, Y. and WU, Y. (2022). Fréchet kernel sliced inverse regression. J. Multivariate Anal. 191 Paper No. 105032, 14. Digital Object Identifier: 10.1016/j.jmva.2022.105032 Google Scholar: Lookup Link MathSciNet: MR4432318 · Zbl 1493.62303 · doi:10.1016/j.jmva.2022.105032
[32] Dryden, I. L., Koloydenko, A. and Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3 1102-1123. Digital Object Identifier: 10.1214/09-AOAS249 Google Scholar: Lookup Link MathSciNet: MR2750388 · Zbl 1196.62063 · doi:10.1214/09-AOAS249
[33] Dryden, I. L. and Mardia, K. V. (2016). Statistical Shape Analysis with Applications in R, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Chichester. Digital Object Identifier: 10.1002/9781119072492 Google Scholar: Lookup Link MathSciNet: MR3559734 · Zbl 1381.62003 · doi:10.1002/9781119072492
[34] DUBEY, P., CHEN, Y. and MÜLLER, H.-G. (2024). Supplement to “Metric statistics: Exploration and inference for random objects With distance profiles.” https://doi.org/10.1214/24-AOS2368SUPP
[35] Dubey, P. and Müller, H.-G. (2019). Fréchet Analysis of Variance for Random Objects. Biometrika 106 803-821. Digital Object Identifier: 10.1093/biomet/asz052 Google Scholar: Lookup Link MathSciNet: MR4031200 · Zbl 1435.62383 · doi:10.1093/biomet/asz052
[36] DUBEY, P. and MÜLLER, H.-G. (2020a). Functional models for time-varying random objects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 275-327. MathSciNet: MR4084166 · Zbl 07554756
[37] DUBEY, P. and MÜLLER, H.-G. (2020b). Fréchet change-point detection. Ann. Statist. 48 3312-3335. Digital Object Identifier: 10.1214/19-AOS1930 Google Scholar: Lookup Link MathSciNet: MR4185810 · Zbl 1461.62243 · doi:10.1214/19-AOS1930
[38] Eltzner, B. and Huckemann, S. F. (2019). A smeary central limit theorem for manifolds with application to high-dimensional spheres. Ann. Statist. 47 3360-3381. Digital Object Identifier: 10.1214/18-AOS1781 Google Scholar: Lookup Link MathSciNet: MR4025745 · Zbl 1436.60032 · doi:10.1214/18-AOS1781
[39] FERAGEN, A., LAUZE, F. and HAUBERG, S. (2015). Geodesic exponential kernels: When curvature and linearity conflict. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3032-3042.
[40] FILZMOSER, P., HRON, K. and TEMPL, M. (2019). Applied Compositional Data Analysis: With Worked Examples in R. Springer.
[41] FRÉCHET, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10 215-310. MathSciNet: MR0027464 · Zbl 0035.20802
[42] FRISTON, K. J., FRITH, C. D., LIDDLE, P. F. and FRACKOWIAK, R. S. J. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13 5-14.
[43] GAO, F. and WELLNER, J. A. (2009). On the rate of convergence of the maximum likelihood estimator of a \(k\)-monotone density. Sci. China Ser. A 52 1525-1538. Digital Object Identifier: 10.1007/s11425-009-0102-y Google Scholar: Lookup Link MathSciNet: MR2520591 · Zbl 1176.62031 · doi:10.1007/s11425-009-0102-y
[44] GARBA, M. K., NYE, T. M. W., LUEG, J. and HUCKEMANN, S. F. (2021). Information geometry for phylogenetic trees. J. Math. Biol. 82 Paper No. 19, 39. Digital Object Identifier: 10.1007/s00285-021-01553-x Google Scholar: Lookup Link MathSciNet: MR4218000 · Zbl 1460.92141 · doi:10.1007/s00285-021-01553-x
[45] GEENENS, G., NIETO-REYES, A. and FRANCISCI, G. (2023). Statistical depth in abstract metric spaces. Stat. Comput. 33 Paper No. 46, 15. Digital Object Identifier: 10.1007/s11222-023-10216-4 Google Scholar: Lookup Link MathSciNet: MR4554146 · Zbl 1516.62013 · doi:10.1007/s11222-023-10216-4
[46] GHODRATI, L. and PANARETOS, V. M. (2023). On distributional autoregression and iterated transportation. arXiv preprint. Available at arXiv:2303.09469.
[47] GHOSAL, A., MEIRING, W. and PETERSEN, A. (2023). Fréchet single index models for object response regression. Electron. J. Stat. 17 1074-1112. Digital Object Identifier: 10.1214/23-ejs2120 Google Scholar: Lookup Link MathSciNet: MR4575027 · Zbl 07690320 · doi:10.1214/23-ejs2120
[48] GHOSAL, R., VARMA, V. R., VOLFSON, D., HILLEL, I., URBANEK, J., HAUSDORFF, J. M., WATTS, A. and ZIPUNNIKOV, V. (2023). Distributional data analysis via quantile functions and its application to modeling digital biomarkers of gait in Alzheimer’s Disease. Biostatistics 24 539-561. Digital Object Identifier: 10.1093/biostatistics/kxab041 Google Scholar: Lookup Link MathSciNet: MR4615240 · doi:10.1093/biostatistics/kxab041
[49] GINESTET, C. E., LI, J., BALACHANDRAN, P., ROSENBERG, S. and KOLACZYK, E. D. (2017). Hypothesis testing for network data in functional neuroimaging. Ann. Appl. Stat. 11 725-750. Digital Object Identifier: 10.1214/16-AOAS1015 Google Scholar: Lookup Link MathSciNet: MR3693544 · Zbl 1391.62217 · doi:10.1214/16-AOAS1015
[50] HRON, K., MENAFOGLIO, A., TEMPL, M., HRŮZOVÁ, K. and FILZMOSER, P. (2016). Simplicial principal component analysis for density functions in Bayes spaces. Comput. Statist. Data Anal. 94 330-350. Digital Object Identifier: 10.1016/j.csda.2015.07.007 Google Scholar: Lookup Link MathSciNet: MR3412829 · Zbl 1468.62082 · doi:10.1016/j.csda.2015.07.007
[51] HSING, T. and EUBANK, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley Series in Probability and Statistics. Wiley, Chichester. Digital Object Identifier: 10.1002/9781118762547 Google Scholar: Lookup Link MathSciNet: MR3379106 · Zbl 1338.62009 · doi:10.1002/9781118762547
[52] HUCKEMANN, S. F. and ELTZNER, B. (2021). Data analysis on nonstandard spaces. Wiley Interdiscip. Rev.: Comput. Stat. 13 Paper No. e1526, 19. Digital Object Identifier: 10.1002/wics.1526 Google Scholar: Lookup Link MathSciNet: MR4242812 · Zbl 07910743 · doi:10.1002/wics.1526
[53] Jeon, J. M. and Park, B. U. (2020). Additive regression with Hilbertian responses. Ann. Statist. 48 2671-2697. Digital Object Identifier: 10.1214/19-AOS1902 Google Scholar: Lookup Link MathSciNet: MR4152117 · Zbl 1471.62328 · doi:10.1214/19-AOS1902
[54] JUNG, S., DRYDEN, I. L. and MARRON, J. S. (2012). Analysis of principal nested spheres. Biometrika 99 551-568. Digital Object Identifier: 10.1093/biomet/ass022 Google Scholar: Lookup Link MathSciNet: MR2966769 · Zbl 1437.62507 · doi:10.1093/biomet/ass022
[55] JUNG, S., SCHWARTZMAN, A. and GROISSER, D. (2015). Scaling-rotation distance and interpolation of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 36 1180-1201. Digital Object Identifier: 10.1137/140967040 Google Scholar: Lookup Link MathSciNet: MR3379023 · Zbl 1321.15020 · doi:10.1137/140967040
[56] KANTOROVITCH, L. (1958). On the translocation of masses. Manage. Sci. 5 1-4. Digital Object Identifier: 10.1287/mnsc.5.1.1 Google Scholar: Lookup Link MathSciNet: MR0096552 · Zbl 0995.90585 · doi:10.1287/mnsc.5.1.1
[57] KIM, J., ROSENBERG, N. A. and PALACIOS, J. A. (2020). Distance metrics for ranked evolutionary trees. Proc. Natl. Acad. Sci. USA 117 28876-28886. Digital Object Identifier: 10.1073/pnas.1922851117 Google Scholar: Lookup Link · Zbl 1485.92076 · doi:10.1073/pnas.1922851117
[58] KLEBANOV, L. B. (2005). N-Distances and Their Applications. Karolinum Press, Charles Univ. Prague, Czech Republic.
[59] KNEIP, A. and UTIKAL, K. J. (2001). Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc. 96 519-542. With comments and a rejoinder by the authors. Digital Object Identifier: 10.1198/016214501753168235 Google Scholar: Lookup Link MathSciNet: MR1946423 · Zbl 1019.62060 · doi:10.1198/016214501753168235
[60] KOLACZYK, E. D., LIN, L., ROSENBERG, S., WALTERS, J. and XU, J. (2020). Averages of unlabeled networks: Geometric characterization and asymptotic behavior. Ann. Statist. 48 514-538. Digital Object Identifier: 10.1214/19-AOS1820 Google Scholar: Lookup Link MathSciNet: MR4065172 · Zbl 1439.62068 · doi:10.1214/19-AOS1820
[61] KOLOURI, S., NADJAHI, K., SIMSEKLI, U., BADEAU, R. and ROHDE, G. (2019). Generalized sliced Wasserstein distances. Adv. Neural Inf. Process. Syst. 32 261-272.
[62] KOLOURI, S., ZOU, Y. and ROHDE, G. K. (2016). Sliced Wasserstein kernels for probability distributions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 5258-5267.
[63] Lin, Z. (2019). Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. SIAM J. Matrix Anal. Appl. 40 1353-1370. Digital Object Identifier: 10.1137/18M1221084 Google Scholar: Lookup Link MathSciNet: MR4032859 · Zbl 07141455 · doi:10.1137/18M1221084
[64] LIN, Z. and MÜLLER, H.-G. (2021). Total variation regularized Fréchet regression for metric-space valued data. Ann. Statist. 49 3510-3533. Digital Object Identifier: 10.1214/21-aos2095 Google Scholar: Lookup Link MathSciNet: MR4352539 · Zbl 1486.62326 · doi:10.1214/21-aos2095
[65] LINDQUIST, M. A. (2008). The statistical analysis of fMRI data. Statist. Sci. 23 439-464. Digital Object Identifier: 10.1214/09-STS282 Google Scholar: Lookup Link MathSciNet: MR2530545 · Zbl 1329.62296 · doi:10.1214/09-STS282
[66] LIU, R. Y. and SINGH, K. (1992). Ordering directional data: Concepts of data depth on circles and spheres. Ann. Statist. 20 1468-1484. Digital Object Identifier: 10.1214/aos/1176348779 Google Scholar: Lookup Link MathSciNet: MR1186260 · Zbl 0766.62027 · doi:10.1214/aos/1176348779
[67] LUEG, J., GARBA, M. K., NYE, T. M. W. and HUCKEMANN, S. F. (2022). Foundations of the Wald space for phylogenetic trees. arXiv preprint. Available ar arXiv:2209.05332.
[68] LUNAGÓMEZ, S., OLHEDE, S. C. and WOLFE, P. J. (2021). Modeling network populations via graph distances. J. Amer. Statist. Assoc. 116 2023-2040. Digital Object Identifier: 10.1080/01621459.2020.1763803 Google Scholar: Lookup Link MathSciNet: MR4353730 · Zbl 1524.62123 · doi:10.1080/01621459.2020.1763803
[69] Lyons, R. (2013). Distance covariance in metric spaces. Ann. Probab. 41 3284-3305. Digital Object Identifier: 10.1214/12-AOP803 Google Scholar: Lookup Link MathSciNet: MR3127883 · Zbl 1292.62087 · doi:10.1214/12-AOP803
[70] MARDIA, K. V. (1978). Some properties of classical multi-dimensional scaling. Comm. Statist. Theory Methods 7 1233-1241. Digital Object Identifier: 10.1080/03610927808827707 Google Scholar: Lookup Link MathSciNet: MR0514645 · Zbl 0403.62033 · doi:10.1080/03610927808827707
[71] MARRON, J. S. and DRYDEN, I. L. (2021). Object Oriented Data Analysis. CRC Press, Boca Raton.
[72] MATABUENA, M., PETERSEN, A., VIDAL, J. C. and GUDE, F. (2021). Glucodensities: A new representation of glucose profiles using distributional data analysis. Stat. Methods Med. Res. 30 1445-1464. Digital Object Identifier: 10.1177/0962280221998064 Google Scholar: Lookup Link MathSciNet: MR4269959 · doi:10.1177/0962280221998064
[73] MÜLLER, H.-G. (2016). Peter Hall, functional data analysis and random objects. Ann. Statist. 44 1867-1887. Digital Object Identifier: 10.1214/16-AOS1492 Google Scholar: Lookup Link MathSciNet: MR3546436 · Zbl 1349.62011 · doi:10.1214/16-AOS1492
[74] PANARETOS, V. M. and ZEMEL, Y. (2020). An Invitation to Statistics in Wasserstein Space. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. Digital Object Identifier: 10.1007/978-3-030-38438-8 Google Scholar: Lookup Link MathSciNet: MR4350694 · Zbl 1433.62010 · doi:10.1007/978-3-030-38438-8
[75] PEGORARO, M. and BERAHA, M. (2022). Projected statistical methods for distributional data on the real line with the Wasserstein metric. J. Mach. Learn. Res. 23 Paper No. [37], 59. MathSciNet: MR4420762 · Zbl 07625190
[76] PETERSEN, A. and MÜLLER, H.-G. (2016a). Functional data analysis for density functions by transformation to a Hilbert space. Ann. Statist. 44 183-218. Digital Object Identifier: 10.1214/15-AOS1363 Google Scholar: Lookup Link MathSciNet: MR3449766 · Zbl 1331.62203 · doi:10.1214/15-AOS1363
[77] PETERSEN, A. and MÜLLER, H.-G. (2016b). Fréchet integration and adaptive metric selection for interpretable covariances of multivariate functional data. Biometrika 103 103-120. Digital Object Identifier: 10.1093/biomet/asv054 Google Scholar: Lookup Link MathSciNet: MR3465824 · Zbl 1452.62400 · doi:10.1093/biomet/asv054
[78] Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. Ann. Statist. 47 691-719. Digital Object Identifier: 10.1214/17-AOS1624 Google Scholar: Lookup Link MathSciNet: MR3909947 · Zbl 1417.62091 · doi:10.1214/17-AOS1624
[79] PETERSEN, A., ZHANG, C. and KOKOSZKA, P. (2022). Modeling probability density functions as data objects. Econom. Stat. 21 159-178. Digital Object Identifier: 10.1016/j.ecosta.2021.04.004 Google Scholar: Lookup Link MathSciNet: MR4366852 · doi:10.1016/j.ecosta.2021.04.004
[80] PIGOLI, D., ASTON, J. A. D., DRYDEN, I. L. and SECCHI, P. (2014). Distances and inference for covariance operators. Biometrika 101 409-422. Digital Object Identifier: 10.1093/biomet/asu008 Google Scholar: Lookup Link MathSciNet: MR3215356 · Zbl 1452.62994 · doi:10.1093/biomet/asu008
[81] POWER, J. D., COHEN, A. L., NELSON, S. M., WIG, G. S., BARNES, K. A., CHURCH, J. A., VOGEL, A. C., LAUMANN, T. O., MIEZIN, F. M. et al. (2011). Functional network organization of the human brain. Neuron 72 665-678.
[82] R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[83] SCEALY, J. L. and WELSH, A. H. (2011). Regression for compositional data by using distributions defined on the hypersphere. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 351-375. Digital Object Identifier: 10.1111/j.1467-9868.2010.00766.x Google Scholar: Lookup Link MathSciNet: MR2815780 · Zbl 1411.62179 · doi:10.1111/j.1467-9868.2010.00766.x
[84] SCEALY, J. L. and WELSH, A. H. (2014). Colours and cocktails: Compositional data analysis 2013 Lancaster lecture. Aust. N. Z. J. Stat. 56 145-169. Digital Object Identifier: 10.1111/anzs.12073 Google Scholar: Lookup Link MathSciNet: MR3226434 zbMATH: 1336.62028 · Zbl 1336.62028 · doi:10.1111/anzs.12073
[85] Schoenberg, I. J. (1937). On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space. Ann. of Math. (2) 38 787-793. Digital Object Identifier: 10.2307/1968835 Google Scholar: Lookup Link MathSciNet: MR1503370 · JFM 63.0363.03 · doi:10.2307/1968835
[86] Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 522-536. Digital Object Identifier: 10.2307/1989894 Google Scholar: Lookup Link MathSciNet: MR1501980 · Zbl 0019.41502 · doi:10.2307/1989894
[87] SCHÖTZ, C. (2019). Convergence rates for the generalized Fréchet mean via the quadruple inequality. Electron. J. Stat. 13 4280-4345. Digital Object Identifier: 10.1214/19-EJS1618 Google Scholar: Lookup Link MathSciNet: MR4023955 · Zbl 1432.62080 · doi:10.1214/19-EJS1618
[88] SCHÖTZ, C. (2022). Nonparametric regression in nonstandard spaces. Electron. J. Stat. 16 4679-4741. Digital Object Identifier: 10.1214/22-ejs2056 Google Scholar: Lookup Link MathSciNet: MR4489238 · Zbl 07603096 · doi:10.1214/22-ejs2056
[89] Sejdinovic, D., Sriperumbudur, B., Gretton, A. and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist. 41 2263-2291. Digital Object Identifier: 10.1214/13-AOS1140 Google Scholar: Lookup Link MathSciNet: MR3127866 · Zbl 1281.62117 · doi:10.1214/13-AOS1140
[90] SEVERN, K. E., DRYDEN, I. L. and PRESTON, S. P. (2022). Manifold valued data analysis of samples of networks, with applications in corpus linguistics. Ann. Appl. Stat. 16 368-390. Digital Object Identifier: 10.1214/21-aoas1480 Google Scholar: Lookup Link MathSciNet: MR4400514 · Zbl 1498.62351 · doi:10.1214/21-aoas1480
[91] STEINKE, F. and HEIN, M. (2009). Non-parametric regression between manifolds. Adv. Neural Inf. Process. Syst. 1561-1568.
[92] Steinke, F., Hein, M. and Schölkopf, B. (2010). Nonparametric regression between general Riemannian manifolds. SIAM J. Imaging Sci. 3 527-563. Digital Object Identifier: 10.1137/080744189 Google Scholar: Lookup Link MathSciNet: MR2736019 · Zbl 1195.41011 · doi:10.1137/080744189
[93] Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemp. Math. 338 357-390. Amer. Math. Soc., Providence, RI. Digital Object Identifier: 10.1090/conm/338/06080 Google Scholar: Lookup Link MathSciNet: MR2039961 · Zbl 1040.60002 · doi:10.1090/conm/338/06080
[94] SZÉKELY, G. J. and RIZZO, M. L. (2004). Testing for equal distributions in high dimension. Interstate 5 1-6.
[95] SZÉKELY, G. J. and RIZZO, M. L. (2017). The energy of data. Annu. Rev. Stat. Appl. 4 447-479.
[96] TUCKER, D. C., WU, Y. and MÜLLER, H.-G. (2023). Variable selection for global Fréchet regression. J. Amer. Statist. Assoc. 118 1023-1037. Digital Object Identifier: 10.1080/01621459.2021.1969240 Google Scholar: Lookup Link MathSciNet: MR4595474 · Zbl 07707220 · doi:10.1080/01621459.2021.1969240
[97] VAKHANIA, N. N., TARIELADZE, V. I. and CHOBANYAN, S. A. (1987). Probability Distributions on Banach Spaces. Mathematics and Its Applications (Soviet Series) 14. Reidel, Dordrecht. Translated from the Russian and with a preface by Wojbor A. Woyczynski. Digital Object Identifier: 10.1007/978-94-009-3873-1 Google Scholar: Lookup Link MathSciNet: MR1435288 · Zbl 0698.60003 · doi:10.1007/978-94-009-3873-1
[98] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. Springer, New York. Digital Object Identifier: 10.1007/978-1-4757-2545-2 Google Scholar: Lookup Link MathSciNet: MR1385671 · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[99] VENET, N. (2019). Nonexistence of fractional Brownian fields indexed by cylinders. Electron. J. Probab. 24 Paper No. 75, 26. Digital Object Identifier: 10.1214/18-EJP256 Google Scholar: Lookup Link MathSciNet: MR3978225 · Zbl 1466.60081 · doi:10.1214/18-EJP256
[100] VIRTA, J., LEE, K.-Y. and LI, L. (2022). Sliced inverse regression in metric spaces. Statist. Sinica 32 2315-2337. MathSciNet: MR4485085 · Zbl 07602343
[101] WANG, H. and MARRON, J. S. (2007). Object oriented data analysis: Sets of trees. Ann. Statist. 35 1849-1873. Digital Object Identifier: 10.1214/009053607000000217 Google Scholar: Lookup Link MathSciNet: MR2363955 · Zbl 1126.62002 · doi:10.1214/009053607000000217
[102] WANG, J.-L., CHIOU, J.-M. and MÜLLER, H.-G. (2016). Functional data analysis. Annu. Rev. Stat. Appl. 3 257-295.
[103] WANG, X., ZHU, J., PAN, W., ZHU, J. and ZHANG, H. (2023). Nonparametric statistical inference via metric distribution function in metric spaces. J. Amer. Statist. Assoc. (to appear). Digital Object Identifier: 10.1080/01621459.2023.2277417 Google Scholar: Lookup Link · doi:10.1080/01621459.2023.2277417
[104] Yuan, Y., Zhu, H., Lin, W. and Marron, J. S. (2012). Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 697-719. Digital Object Identifier: 10.1111/j.1467-9868.2011.01022.x Google Scholar: Lookup Link MathSciNet: MR2965956 · Zbl 1411.62110 · doi:10.1111/j.1467-9868.2011.01022.x
[105] Zemel, Y. and Panaretos, V. M. (2019). Fréchet means and Procrustes analysis in Wasserstein space. Bernoulli 25 932-976. Digital Object Identifier: 10.3150/17-bej1009 Google Scholar: Lookup Link MathSciNet: MR3920362 · Zbl 1431.62132 · doi:10.3150/17-bej1009
[106] ZHANG, Q., LI, B. and XUE, L. (2024). Nonlinear sufficient dimension reduction for distribution-on-distribution regression. J. Multivariate Anal. 202 Paper No. 105302. Digital Object Identifier: 10.1016/j.jmva.2024.105302 Google Scholar: Lookup Link MathSciNet: MR4711112 · Zbl 07846376 · doi:10.1016/j.jmva.2024.105302
[107] ZHANG, Q., XUE, L. and LI, B. (2021). Dimension reduction and data visualization for Fréchet regression. arXiv preprint. Available at arXiv:2110.00467.
[108] ZHOU, H. and MÜLLER, H.-G. (2023). Optimal transport representations and functional principal components for distribution-valued processes. arXiv preprint. Available at arXiv:2310.20088.
[109] ZHOU, Y. and MÜLLER, H.-G. (2022). Network regression with graph Laplacians. J. Mach. Learn. Res. 23 Paper No. [320], 41. Digital Object Identifier: 10.22405/2226-8383-2022-23-5-320-336 Google Scholar: Lookup Link MathSciNet: MR4577759 · Zbl 1528.74098 · doi:10.22405/2226-8383-2022-23-5-320-336
[110] ZHU, C. and MÜLLER, H.-G. (2023a). Autoregressive optimal transport models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 85 1012-1033. · Zbl 07913977
[111] ZHU, C. and MÜLLER, H.-G. (2023b). Geodesic optimal transport regression. arXiv preprint. Available at arXiv:2312.15376.
[112] ZHU, C. and MÜLLER, H.-G. (2024). Spherical autoregressive models, with application to distributional and compositional time series. J. Econometrics 239 Paper No. 105389, 16. Digital Object Identifier: 10.1016/j.jeconom.2022.12.008 Google Scholar: Lookup Link MathSciNet: MR4708615 · Zbl 07814008 · doi:10.1016/j.jeconom.2022.12.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.