×

Sliced inverse regression in metric spaces. (English) Zbl 07602343

Summary: In this article, we propose a general nonlinear sufficient dimension reduction (SDR) framework when both the predictor and the response lie in some general metric spaces. We construct reproducing kernel Hilbert spaces with kernels that are fully determined by the distance functions of the metric spaces, and then leverage the inherent structures of these spaces to define a nonlinear SDR framework. We adapt the classical sliced inverse regression within this framework for the metric space data. Next we build an estimator based on the corresponding linear operators, and show that it recovers the regression information in an unbiased manner. We derive the estimator at both the operator level and under a coordinate system, and establish its convergence rate. Lastly, we illustrate the proposed method using synthetic and real data sets that exhibit non-Euclidean geometry.

MSC:

62-XX Statistics

References:

[1] Cook, R. and Li, B. (2002). Dimension reduction for conditional mean in regression. The Annals of Statistics 30, 455-474. · Zbl 1012.62035
[2] Cook, R. and Weisberg, S. (1991). Discussion of “Sliced inverse regression for dimension reduc-tion”. Journal of the American Statistical Association 86, 328-332. · Zbl 1353.62037
[3] Cornea, E., Zhu, H., Kim, P., Ibrahim, J. G. and the Alzheimer’s Disease Neuroimaging Initiative (2017). Regression models on Riemannian symmetric spaces. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79, 463-482. · Zbl 1414.62177
[4] Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K. et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry 19, 659-667.
[5] Douglas, R. G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space. In Proceedings of the American Mathematical Society 17, 413-415. · Zbl 0146.12503
[6] Dubey, P. and Müller, H.-G. (2019). Fréchet analysis of variance for random objects. Biometrika 106, 803-821. · Zbl 1435.62383
[7] Fox, M. D. and Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience 4, 1-13.
[8] Fukumizu, K., Bach, F. R. and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research 5, 73-99. · Zbl 1222.62069
[9] Fukumizu, K., Bach, F. R. and Jordan, M. I. (2009). Kernel dimension reduction in regression. The Annals of Statistics 37, 1871-1905. · Zbl 1168.62049
[10] Guo, Z., Zhang, J., Wang, Z., Ang, K. Y., Huang, S., Hou, Q. et al. (2016). Intestinal microbiota distinguish gout patients from healthy humans. Scientific Reports 6, 1-10.
[11] Hein, M. and Bousquet, O. (2004). Kernels, associated structures and generalizations. Technical report. Max Planck Institute for Biological Cybernetics.
[12] Hung, H. and Huang, S.-Y. (2019). Sufficient dimension reduction via random-partitions for the large-p-small-n problem. Biometrics 75, 245-255. · Zbl 1436.62571
[13] Lee, K.-Y., Li, B. and Chiaromonte, F. (2013). A general theory for nonlinear sufficient dimen-sion reduction: Formulation and estimation. The Annals of Statistics 41, 221-249. · Zbl 1347.62018
[14] Lee, K.-Y. and Li, L. (2022). Functional sufficient dimension reduction through average Fréchet derivatives. The Annals of Statistics 50, 904-929 · Zbl 1486.62115
[15] Li, B. (2018a). Linear operator-based statistical analysis: A useful paradigm for big data. Cana-dian Journal of Statistics 46, 79-103. · Zbl 1466.62363
[16] Li, B. (2018b). Sufficient Dimension Reduction: Methods and Applications with R. Chapman and Hall, CRC. · Zbl 1408.62011
[17] Li, B., Artemiou, A. and Li, L. (2011). Principal support vector machines for linear and nonlinear sufficient dimension reduction. The Annals of Statistics 36, 3182-3210. · Zbl 1246.62153
[18] Li, B. and Song, J. (2017). Nonlinear sufficient dimension reduction for functional data. The Annals of Statistics 45, 1059-1095. · Zbl 1371.62003
[19] Li, B. and Song, J. (2022). Dimension reduction for functional data based on weak conditional moments. The Annals of Statistics 50, 107-128. · Zbl 1486.62116
[20] Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the American Statistical Association 102, 997-1008. · Zbl 1469.62300
[21] Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association 86, 316-327. · Zbl 0742.62044
[22] Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduc-tion: Another application of Stein’s lemma. Journal of the American Statistical Associa-tion 87, 1025-1039. · Zbl 0765.62003
[23] Lin, L., Thomas, B. S., Zhu, H. and Dunson, D. B. (2017). Extrinsic local regression on manifold-valued data. Journal of the American Statistical Association 112, 1261-1273.
[24] Lin, Z. and Yao, F. (2019). Intrinsic Riemannian functional data analysis. The Annals of Statis-tics 47, 3533-3577. · Zbl 1435.62264
[25] Lu, J., Shi, P. and Li, H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics 75, 235-244. · Zbl 1436.62596
[26] Luo, R., Wang, H., Tsai, C.-L. et al. (2009). Contour projected dimension reduction. The Annals of Statistics 37, 3743-3778. · Zbl 1360.62184
[27] Ma, Y. and Zhu, L. (2012). A semiparametric approach to dimension reduction. Journal of the American Statistical Association 107, 168-179. · Zbl 1261.62037
[28] Ma, Y. and Zhu, L. (2013). Efficient estimation in sufficient dimension reduction. The Annals of Statistics 41, 250-268. · Zbl 1347.62089
[29] Pan, W., Wang, X., Zhang, H., Zhu, H. and Zhu, J. (2020). Ball covariance: A generic measure of dependence in Banach space. Journal of the American Statistical Association 115, 307-317. · Zbl 1437.62287
[30] Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. The Annals of Statistics 47, 691 -719. · Zbl 1417.62091
[31] Rudie, J., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E., Thompson, P. et al. (2013). Altered functional and structural brain network organization in autism. NeuroImage: Clin-ical 2, 79 -94.
[32] Sra, S. (2016). Positive definite matrices and the S-divergence. In Proceedings of the American Mathematical Society 144, 2787-2797. · Zbl 1338.15046
[33] Sun, W. and Li, L. (2017). Sparse tensor response regression and neuroimaging analysis. Journal of Machine Learning Research 18, 4908-4944.
[34] Tomassi, D., Forzani, L., Duarte, S. and Pfeiffer, R. M. (2019). Sufficient dimension reduction for compositional data. Biostatistics 22, 687-705.
[35] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N. et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273-289.
[36] Wang, H. and Marron, J. S. (2007). Object oriented data analysis: Sets of trees. The Annals of Statistics 35, 1849-1873. · Zbl 1126.62002
[37] Xia, Q., Xu, W. and Zhu, L. (2015). Consistently determining the number of factors in multi-variate volatility modelling. Statistica Sinica 25, 1025-1044. · Zbl 1415.62067
[38] Xia, Y., Tong, H., Li, W. K. and Zhu, L.-X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society, Series B (Statistical Methodol-ogy) 64, 363-410. · Zbl 1091.62028
[39] Yeh, Y.-R., Huang, S.-Y. and Lee, Y.-J. (2008). Nonlinear dimension reduction with kernel sliced inverse regression. IEEE Transactions on Knowledge and Data Engineering 21, 1590-1603.
[40] Yin, X., Li, B. and Cook, R. D. (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression. Journal of Multivariate Analysis 99, 1733-1757. · Zbl 1144.62030
[41] Ying, C. and Yu, Z. (2020). Fréchet sufficient dimension reduction for random objects. arXiv preprint arXiv:2007.00292, 1-64.
[42] Zhang, J., Sun, W. W. and Li, L. (2020). Mixed-effect time-varying network model and appli-cation in brain connectivity analysis. Journal of the American Statistical Association 115, 2022-2036. · Zbl 1453.62747
[43] Zhu, H., Chen, Y., Ibrahim, J. G., Li, Y., Hall, C. and Lin, W. (2009). Intrinsic regression models for positive-definite matrices with applications to diffusion tensor imaging. Journal of the American Statistical Association 104, 1203-1212. · Zbl 1388.62198
[44] Zhu, L., Miao, B. and Peng, H. (2006). On sliced inverse regression with high-dimensional covariates. Journal of the American Statistical Association 101, 630-643. · Zbl 1119.62331
[45] Kuang-Yao Lee Department of Statistical Science, Temple University, Philadelphia, PA 19122, USA. E-mail: kuang-yao.lee@temple.edu
[46] Lexin Li School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA. E-mail: lexinli@berkeley.edu (Received March 2022; accepted May 2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.