×

Inference for extremal regression with dependent heavy-tailed data. (English) Zbl 1539.62129

Summary: Nonparametric inference on tail conditional quantiles and their least squares analogs, expectiles, remains limited to i.i.d. data. We develop a fully operational inferential theory for extreme conditional quantiles and expectiles in the challenging framework of \(\alpha \)-mixing, conditional heavy-tailed data whose tail index may vary with covariate values. This requires a dedicated treatment to deal with data sparsity in the far tail of the response, in addition to handling difficulties inherent to mixing, smoothing and sparsity associated to covariate localization. We prove the pointwise asymptotic normality of our estimators and obtain optimal rates of convergence reminiscent of those found in the i.i.d. regression setting, but which had not been established in the conditional extreme value literature. Our assumptions hold in a wide range of models. We propose full bias and variance reduction procedures, and simple but effective data-based rules for selecting tuning hyperparameters. Our inference strategy is shown to perform well in finite samples and is showcased in applications to stock returns and tornado loss data.

MSC:

62G32 Statistics of extreme values; tail inference
62G05 Nonparametric estimation
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference

References:

[1] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9 203-228. Digital Object Identifier: 10.1111/1467-9965.00068 Google Scholar: Lookup Link MathSciNet: MR1850791 · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[2] Beirlant, J., Goegebeur, Y., Teugels, J. and Segers, J. (2004). Statistics of Extremes: Theory and Applications. Wiley Series in Probability and Statistics. Wiley, Chichester. Digital Object Identifier: 10.1002/0470012382 Google Scholar: Lookup Link MathSciNet: MR2108013 · Zbl 1070.62036 · doi:10.1002/0470012382
[3] Bellini, F. and Di Bernardino, E. (2017). Risk management with expectiles. Eur. J. Finance 23 487-506.
[4] Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107-144. Digital Object Identifier: 10.1214/154957805100000104 Google Scholar: Lookup Link MathSciNet: MR2178042 · Zbl 1189.60077 · doi:10.1214/154957805100000104
[5] CHAUDHURI, P. (1991). Global nonparametric estimation of conditional quantile functions and their derivatives. J. Multivariate Anal. 39 246-269. Digital Object Identifier: 10.1016/0047-259X(91)90100-G Google Scholar: Lookup Link MathSciNet: MR1147121 · Zbl 0739.62028 · doi:10.1016/0047-259X(91)90100-G
[6] Chernozhukov, V. (2005). Extremal quantile regression. Ann. Statist. 33 806-839. Digital Object Identifier: 10.1214/009053604000001165 Google Scholar: Lookup Link MathSciNet: MR2163160 · Zbl 1068.62063 · doi:10.1214/009053604000001165
[7] CHERNOZHUKOV, V. and FERNÁNDEZ-VAL, I. (2011). Inference for extremal conditional quantile models, with an application to market and birthweight risks. Rev. Econ. Stud. 78 559-589. Digital Object Identifier: 10.1093/restud/rdq020 Google Scholar: Lookup Link MathSciNet: MR2808129 · Zbl 1216.62077 · doi:10.1093/restud/rdq020
[8] CHERNOZHUKOV, V., FERNÁNDEZ-VAL, I. and KAJI, T. (2018). Extremal quantile regression. In Handbook of Quantile Regression (R. Koenker, V. Chernozhukov, X. He and L. Peng, eds.). Chapman & Hall/CRC Handb. Mod. Stat. Methods 333-362. CRC Press, Boca Raton, FL. MathSciNet: MR3821131 · Zbl 1395.62003
[9] DAOUIA, A., GARDES, L. and GIRARD, S. (2013). On kernel smoothing for extremal quantile regression. Bernoulli 19 2557-2589. Digital Object Identifier: 10.3150/12-BEJ466 Google Scholar: Lookup Link MathSciNet: MR3160564 · Zbl 1281.62097 · doi:10.3150/12-BEJ466
[10] Daouia, A., Gardes, L., Girard, S. and Lekina, A. (2011). Kernel estimators of extreme level curves. TEST 20 311-333. Digital Object Identifier: 10.1007/s11749-010-0196-0 Google Scholar: Lookup Link MathSciNet: MR2834049 · Zbl 1367.62159 · doi:10.1007/s11749-010-0196-0
[11] Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 263-292. Digital Object Identifier: 10.1111/rssb.12254 Google Scholar: Lookup Link MathSciNet: MR3763692 · Zbl 1383.62235 · doi:10.1111/rssb.12254
[12] DAOUIA, A., STUPFLER, G. and USSEGLIO-CARLEVE, A. (2023). Supplement to “Inference for extremal regression with dependent heavy-tailed data.” https://doi.org/10.1214/23-AOS2320SUPP
[13] DAVISON, A. C., PADOAN, S. A. and STUPFLER, G. (2023). Tail risk inference via expectiles in heavy-tailed time series. J. Bus. Econom. Statist. 41 876-889. Digital Object Identifier: 10.1080/07350015.2022.2078332 Google Scholar: Lookup Link MathSciNet: MR4600855 · Zbl 1531.62126 · doi:10.1080/07350015.2022.2078332
[14] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York. Digital Object Identifier: 10.1007/0-387-34471-3 Google Scholar: Lookup Link MathSciNet: MR2234156 · Zbl 1101.62002 · doi:10.1007/0-387-34471-3
[15] Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 617-657. Digital Object Identifier: 10.3150/bj/1066223272 Google Scholar: Lookup Link MathSciNet: MR1996273 · doi:10.3150/bj/1066223272
[16] GIRARD, S., STUPFLER, G. and USSEGLIO-CARLEVE, A. (2021). Extreme conditional expectile estimation in heavy-tailed heteroscedastic regression models. Ann. Statist. 49 3358-3382. Digital Object Identifier: 10.1214/21-aos2087 Google Scholar: Lookup Link MathSciNet: MR4352533 · Zbl 1486.62141 · doi:10.1214/21-aos2087
[17] GIRARD, S., STUPFLER, G. and USSEGLIO-CARLEVE, A. (2022). Nonparametric extreme conditional expectile estimation. Scand. J. Stat. 49 78-115. Digital Object Identifier: 10.1111/sjos.12502 Google Scholar: Lookup Link MathSciNet: MR4391048 · Zbl 07638423 · doi:10.1111/sjos.12502
[18] GIRARD, S., STUPFLER, G. and USSEGLIO-CARLEVE, A. (2022). On automatic bias reduction for extreme expectile estimation. Stat. Comput. 32 Paper No. 64, 18 pp. Digital Object Identifier: 10.1007/s11222-022-10118-x Google Scholar: Lookup Link MathSciNet: MR4466976 · Zbl 1495.62010 · doi:10.1007/s11222-022-10118-x
[19] GOMES, M. I. and PESTANA, D. (2007). A sturdy reduced-bias extreme quantile (VaR) estimator. J. Amer. Statist. Assoc. 102 280-292. Digital Object Identifier: 10.1198/016214506000000799 Google Scholar: Lookup Link MathSciNet: MR2345543 zbMATH: 1284.62300 · Zbl 1284.62300 · doi:10.1198/016214506000000799
[20] JONES, M. C. (1994). Expectiles and \(M\)-quantiles are quantiles. Statist. Probab. Lett. 20 149-153. Digital Object Identifier: 10.1016/0167-7152(94)90031-0 Google Scholar: Lookup Link MathSciNet: MR1293293 · Zbl 0801.62012 · doi:10.1016/0167-7152(94)90031-0
[21] LINTON, O. and XIAO, Z. (2013). Estimation of and inference about the expected shortfall for time series with infinite variance. Econometric Theory 29 771-807. Digital Object Identifier: 10.1017/S0266466612000692 Google Scholar: Lookup Link MathSciNet: MR3092463 · Zbl 1283.91156 · doi:10.1017/S0266466612000692
[22] Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica 55 819-847. Digital Object Identifier: 10.2307/1911031 Google Scholar: Lookup Link MathSciNet: MR0906565 MathSciNet: MR906565 · Zbl 0625.62047 · doi:10.2307/1911031
[23] SMITH, R. L. and WEISSMAN, I. (1996). Characterization and estimation of the multivariate extremal index. Technical report, Univ. North Carolina.
[24] USSEGLIO-CARLEVE, A. (2018). Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors. Electron. J. Stat. 12 4057-4093. Digital Object Identifier: 10.1214/18-EJS1499 Google Scholar: Lookup Link MathSciNet: MR3887178 · Zbl 1409.62218 · doi:10.1214/18-EJS1499
[25] Wang, H. J., Li, D. and He, X. (2012). Estimation of high conditional quantiles for heavy-tailed distributions. J. Amer. Statist. Assoc. 107 1453-1464. Digital Object Identifier: 10.1080/01621459.2012.716382 Google Scholar: Lookup Link MathSciNet: MR3036407 · Zbl 1258.62053 · doi:10.1080/01621459.2012.716382
[26] Wasserman, L. (2006). All of Nonparametric Statistics. Springer Texts in Statistics. Springer, New York. MathSciNet: MR2172729 · Zbl 1099.62029
[27] Weissman, I. (1978). Estimation of parameters and large quantiles based on the \(k\) largest observations. J. Amer. Statist. Assoc. 73 812-815. MathSciNet: MR0521329 · Zbl 0397.62034
[28] YEE, T. W. and WILD, C. J. (1996). Vector generalized additive models. J. Roy. Statist. Soc. Ser. B 58 481-493. MathSciNet: MR1394361 · Zbl 0855.62059
[29] Ziegel, J. F. (2016). Coherence and elicitability. Math. Finance 26 901-918. Digital Object Identifier: 10.1111/mafi.12080 Google Scholar: Lookup Link MathSciNet: MR3551510 · Zbl 1390.91336 · doi:10.1111/mafi.12080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.