×

Kernel estimators of extreme level curves. (English) Zbl 1367.62159

Summary: We address the estimation of extreme level curves of heavy-tailed distributions. This problem is equivalent to estimating quantiles when covariate information is available and when their order converges to one as the sample size increases. We show that, under some conditions, these so-called “extreme conditional quantiles” can still be estimated through a kernel estimator of the conditional survival function. Sufficient conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed estimators. Making use of this result, some kernel estimators of the conditional tail-index are introduced and a Weissman type estimator is derived, permitting to estimate extreme conditional quantiles of arbitrary large order. These results are illustrated through simulated and real datasets.

MSC:

62G32 Statistics of extreme values; tail inference
62G07 Density estimation
62G30 Order statistics; empirical distribution functions
62E20 Asymptotic distribution theory in statistics

References:

[1] Alves MIF, Gomes MI, de Haan L (2003) A new class of semi-parametric estimators of the second order parameter. Port Math 60:193–214 · Zbl 1042.62050
[2] Alves MIF, de Haan L, Lin T (2003) Estimation of the parameter controlling the speed of convergence in extreme value theory. Math Methods Stat 12:155–176
[3] Beirlant J, Goegebeur Y (2003) Regression with response distributions of Pareto-type. Comput Stat Data Anal, 42:595–619 · Zbl 1429.62078 · doi:10.1016/S0167-9473(02)00120-2
[4] Berlinet A, Gannoun A, Matzner-Løber E (2001) Asymptotic normality of convergent estimates of conditional quantiles. Statistics 35:139–169 · Zbl 0997.62037 · doi:10.1080/02331880108802728
[5] Bernard-Michel C, Douté S, Fauvel M, Gardes L, Girard S (2009) Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression. J Geophys Res Planets 114:E06005
[6] Bernard-Michel C, Gardes L, Girard S (2009) Gaussian regularized sliced inverse regression. Stat Comput 19:85–98 · doi:10.1007/s11222-008-9073-z
[7] Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University Press, Cambridge
[8] Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. J R Stat Soc Ser C 54:207–222 · Zbl 1490.62194 · doi:10.1111/j.1467-9876.2005.00479.x
[9] Collomb G (1976) Estimation non paramétrique de la régression par la méthode du noyau. PhD thesis, Université Paul Sabatier de Toulouse
[10] Davison AC, Ramesh NI (2000) Local likelihood smoothing of sample extremes. J R Stat Soc, Ser B 62:191–208 · Zbl 0942.62058 · doi:10.1111/1467-9868.00228
[11] Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc, Ser B 52:393–442 · Zbl 0706.62039
[12] Dekkers A, de Haan L (1989) On the estimation of the extreme-value index and large quantile estimation. Ann Stat 17:1795–1832 · Zbl 0699.62028 · doi:10.1214/aos/1176347396
[13] Einmahl JHJ (1990) The empirical distribution function as a tail estimator. Stat Neerl 44:79–82 · Zbl 0713.62052 · doi:10.1111/j.1467-9574.1990.tb01528.x
[14] Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events. Springer, Berlin · Zbl 0873.62116
[15] Ferraty F, Vieu P (2005) Nonparametric modelling for functional data. Springer, Berlin · Zbl 1192.62104
[16] Gannoun, A (1990) Estimation non paramétrique de la médiane conditionnelle, médianogramme et méthode du noyau. Publ Inst Stat Univ Paris XXXXVI:11–22
[17] Gannoun A, Girard S, Guinot C, Saracco J (2002) Reference ranges based on nonparametric quantile regression. Stat Med 21:3119–3135 · doi:10.1002/sim.1226
[18] Gardes L (2002) Estimating the support of a Poisson process via the Faber-Shauder basis and extreme values. Publ Inst Stat Univ Paris XXXXVI:43–72 · Zbl 1053.62092
[19] Gardes L, Girard S (2008) A moving window approach for nonparametric estimation of the conditional tail index. J Multivar Anal 99:2368–2388 · Zbl 1151.62040 · doi:10.1016/j.jmva.2008.02.023
[20] Gardes L, Girard S, Lekina A (2010) Functional nonparametric estimation of conditional extreme quantiles. J Multivar Anal 101:419–433 · Zbl 1178.62055 · doi:10.1016/j.jmva.2009.06.007
[21] Geffroy J (1964) Sur un problème d’estimation géométrique. Publ Inst Stat Univ Paris XIII:191–210 · Zbl 0129.32301
[22] Gijbels I, Peng L (2000) Estimation of a support curve via order statistics. Extremes 3:251–277 · Zbl 0979.62035 · doi:10.1023/A:1011407111136
[23] Girard S, Jacob P (2004) Extreme values and kernel estimates of point processes boundaries. ESAIM: Probab Stat 8:150–168 · Zbl 1154.60330 · doi:10.1051/ps:2004008
[24] Girard S, Jacob P (2008) Frontier estimation via kernel regression on high power-transformed data. J Multivar Anal 99:403–420 · Zbl 1206.62070 · doi:10.1016/j.jmva.2006.11.006
[25] Girard S, Menneteau L (2005) Central limit theorems for smoothed extreme value estimates of point processes boundaries. J Stat Plan Inference 135(2):433–460 · Zbl 1094.60039 · doi:10.1016/j.jspi.2004.04.020
[26] Gomes MI, Martins MJ, Neves M (2000) Semi-parametric estimation of the second order parameter, asymptotic and finite sample behaviour. Extremes 3:207–229 · Zbl 0979.62038 · doi:10.1023/A:1011470010228
[27] de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer series in operations research and financial engineering. Springer, Berlin · Zbl 1101.62002
[28] Hall P, Tajvidi N (2000) Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat Sci 15:153–167 · doi:10.1214/ss/1009212755
[29] Hall P, Nussbaum M, Stern S (1997) On the estimation of a support curve of indeterminate sharpness. J Multivar Anal 62(2):204–232 · Zbl 0890.62029 · doi:10.1006/jmva.1997.1681
[30] Härdle W, Park BU, Tsybakov AB (1995) Estimation of a non sharp support boundaries. J Multivar Anal 43:205–218 · Zbl 0863.62030 · doi:10.1006/jmva.1995.1075
[31] Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174 · Zbl 0323.62033 · doi:10.1214/aos/1176343247
[32] Korostelev AP, Tsybakov AB (1993) Minimax theory of image reconstruction. Lecture notes in statistics, vol 82. Springer, New York · Zbl 0833.62039
[33] Meligkotsidou L, Vrontos I, Vrontos S (2009) Quantile regression analysis of hedge fund strategies. J Empir Finance 16:264–279 · doi:10.1016/j.jempfin.2008.10.002
[34] Menneteau L (2008) Multidimensional limit theorems for smoothed extreme value estimates of point processes boundaries. ESAIM: Probab Stat 12:273–307 · Zbl 1186.62063 · doi:10.1051/ps:2007039
[35] Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131 · Zbl 0312.62038 · doi:10.1214/aos/1176343003
[36] Roussas GG (1969) Nonparametric estimation of the transition distribution function of a Markov process. Ann Math Stat 40:1386–1400 · Zbl 0188.50501 · doi:10.1214/aoms/1177697510
[37] Samanta T (1989) Non-parametric estimation of conditional quantiles. Stat Probab Lett 7:407–412 · Zbl 0678.62049 · doi:10.1016/0167-7152(89)90095-3
[38] Smith RL (1989) Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion). Stat Sci 4:367–393 · Zbl 0955.62646 · doi:10.1214/ss/1177012400
[39] Stone CJ (1977) Consistent nonparametric regression (with discussion). Ann Stat 5:595–645 · Zbl 0366.62051 · doi:10.1214/aos/1176343886
[40] Stute W (1986) Conditional empirical processes. Ann Stat 14:638–647 · Zbl 0594.62038 · doi:10.1214/aos/1176349943
[41] Weissman I (1978) Estimation of parameters and large quantiles based on the k largest observations. J Am Stat Assoc 73:812–815 · Zbl 0397.62034
[42] Yao Q (1999) Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.