×

Analysis of JS-contractions with applications to fractional boundary value problems. (English) Zbl 1539.47124

Summary: In this article, we modify JS-contractions by weakening the conditions on the function \(\theta\), where \(\theta : (0,\infty) \rightarrow (1,\infty)\) is a strictly increasing function. We prove fixed-point results for obtained contractions. Some examples are given to validate the results and modifications. We use our main theorem to establish the existence results for the solutions of the Atangana-Baleanu-Caputo fractional boundary value problem [A. Atangana and D. Baleanu, Therm. Sci. 20, No. 2, 763–769 (2016; doi:10.2298/TSCI160111018A)] with integral boundary conditions. We also present a new definition of \(\theta\)-Ulam stability and find the stability of our fractional boundary value problem.

MSC:

47N20 Applications of operator theory to differential and integral equations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
34A08 Fractional ordinary differential equations
39B82 Stability, separation, extension, and related topics for functional equations

References:

[1] Abdeljawad, T., A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017, 1 (2017) · Zbl 1368.26003 · doi:10.1186/s13660-017-1400-5
[2] Abdeljawad, T.; Baleanu, D., Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016, 1 (2016) · Zbl 1419.34211 · doi:10.1186/s13662-016-0949-5
[3] Abdeljawad, T.; Baleanu, D., Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10, 3, 1098-1107 (2017) · Zbl 1412.47086 · doi:10.22436/jnsa.010.03.20
[4] Agarwal, P.; Nieto, J. J.; Luo, M. J., Extended Riemann-Liouville type fractional derivative operator with applications, Open Math., 15, 1, 1667-1681 (2017) · Zbl 1391.26020 · doi:10.1515/math-2017-0137
[5] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[6] Ahmad, B.; Ntouyas, S., A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17, 2, 348-360 (2014) · Zbl 1312.34005 · doi:10.2478/s13540-014-0173-5
[7] Amara, A.; Etemad, S.; Rezapour, S., Approximate solutions for a fractional hybrid initial value problem via the Caputo conformable derivative, Adv. Differ. Equ., 2020 (2020) · Zbl 1486.34015 · doi:10.1186/s13662-020-03072-3
[8] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 2, 763 (2016) · doi:10.2298/TSCI160111018A
[9] Baleanu, D.; Agarwal, R. P., Fractional calculus in the sky, Adv. Differ. Equ., 2021, 1 (2021) · Zbl 1494.26007 · doi:10.1186/s13662-021-03270-7
[10] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Mozyrska, D., A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, Interdiscip. J. Nonlinear Sci., 29, 8 (2019) · Zbl 1420.92039 · doi:10.1063/1.5096159
[11] Banach, S., Sur les operations dans les ensembles abstraits et leur applications aux equations integrals, Fundam. Math., 3, 133-181 (1992) · JFM 48.0201.01 · doi:10.4064/fm-3-1-133-181
[12] Bari, C. D.; Vetro, P., Common fixed points in generalized metric spaces, Appl. Math. Comput., 218, 13, 7322-7325 (2012) · Zbl 1248.54023
[13] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpath. J. Math., 19, 1, 7-22 (2003) · Zbl 1114.47045
[14] Boyed, D. W.; Wong, J. S.W., On nonlinear contractions, Proc. Am. Math. Soc., 20, 458-464 (1969) · Zbl 0175.44903 · doi:10.1090/S0002-9939-1969-0239559-9
[15] Branciari, A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. (Debr.), 57, 31-37 (2000) · Zbl 0963.54031 · doi:10.5486/PMD.2000.2133
[16] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 1-13 (2015)
[17] Hussain, N.; Parvane, V.; Samet, B.; Vetro, C., Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015 (2015) · Zbl 1345.54049 · doi:10.1186/s13663-015-0433-z
[18] Jamshaid, A.; Al-Mazrooei, A. E.; Cho, Y. J.; Yang, Y.-O., Fixed point results for generalized θ-contractions, J. Nonlinear Sci. Appl., 10, 5, 2350-2358 (2017) · Zbl 1412.46088 · doi:10.22436/jnsa.010.05.07
[19] Jiang, S.; Li, Z.; Damjanović, B., A note on ‘Some fixed point theorems for generalized contractive mappings in complete metric spaces’, Fixed Point Theory Algorithms Sci. Eng., 2016 (2016) · Zbl 1345.54050 · doi:10.1186/s13663-016-0539-y
[20] Jleli, M.; Samet, B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014) · Zbl 1322.47052 · doi:10.1186/1029-242X-2014-38
[21] Kilbas, A. A., Hadamard-type fractional calculus, J. Korean Math. Soc., 38, 6, 1191-1204 (2001) · Zbl 1018.26003
[22] Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D., Two sequential fractional hybrid differential inclusions, Adv. Differ. Equ., 2020 (2020) · Zbl 1485.34047 · doi:10.1186/s13662-020-02850-3
[23] Parvane, V.; Hussain, N.; Mukheimer, A.; Aydi, H., On fixed point results for modified JS-contractions with applications, Axioms, 8, 3 (2019) · Zbl 1432.54073 · doi:10.3390/axioms8030084
[24] Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J. L.G., Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized ψ-RL-operators, Symmetry, 13, 4 (2021) · doi:10.3390/sym13040532
[25] Shatanawi, W.; Shatnawi, T. A., Some fixed point results based on contractions of new types for extended b-metric spaces, AIMS Math., 8, 5, 10929-10946 (2023) · doi:10.3934/math.2023554
[26] Shatanawi, W.; Shatnawi, T. A., New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8, 4, 9314-9330 (2023) · doi:10.3934/math.2023468
[27] Taş, N.; Kaplan, E.; Santina, D.; Mlaiki, N., Some common fixed circle results on metric and S-metric spaces with an application to activation functions, Symmetry, 15, 5 (2023) · doi:10.3390/sym15050971
[28] Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S., On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021) · Zbl 1494.34062 · doi:10.1186/s13662-021-03359-z
[29] Turinici, M.: Wardowski implicit contractions in metric spaces, 1-8 (2013). arXiv:1211.3164v2 [math.GN]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.