×

A new generalization of the Banach contraction principle. (English) Zbl 1322.47052

Denote by \(\Theta\) the class of all functions \(\theta:(0,\infty)\to (1,\infty)\) satisfying
(i)
\(\theta\) is non-decreasing,
(ii)
\(\theta(t_n)\to 1\) if and only if \(t_n\to 0\),
(iii)
\(\exists r\in (0,1)\), \(\exists s\in (0,\infty]\), such that \(\lim_{t\to 0+}(\theta(t)-1)/(t^r)=s\).
The main result is the following.
{ Theorem.} Let \((X,d)\) be a complete Branciari metric space and \(T:X\to X\) be a map. Suppose that there exist a function \(\theta\in \Theta\) and a number \(k\in (0,1)\) such that \[ x,y\in X,\;d(Tx,Ty)> 0\;\Longrightarrow\;\theta(d(Tx,Ty))\leq [\theta(d(x,y))]^k. \] Then \(T\) has a unique fixed point in \(X\).
Some comments involving related statements in the area are also given.

MSC:

47H10 Fixed-point theorems
54H25 Fixed-point and coincidence theorems (topological aspects)

Citations:

Zbl 0963.54031
Full Text: DOI

References:

[1] doi:10.1090/S0002-9939-1969-0239559-9 · doi:10.1090/S0002-9939-1969-0239559-9
[2] doi:10.1016/S0022-247X(02)00612-1 · Zbl 1022.47036 · doi:10.1016/S0022-247X(02)00612-1
[3] doi:10.1016/0022-247X(69)90031-6 · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[4] doi:10.1090/S0002-9939-1962-0148046-1 · doi:10.1090/S0002-9939-1962-0148046-1
[5] doi:10.1016/j.na.2005.04.054 · Zbl 1101.54047 · doi:10.1016/j.na.2005.04.054
[6] doi:10.1016/j.amc.2012.01.010 · Zbl 1248.54023 · doi:10.1016/j.amc.2012.01.010
[7] doi:10.1090/S0002-9939-00-05838-X · Zbl 0966.47040 · doi:10.1090/S0002-9939-00-05838-X
[8] doi:10.1016/j.na.2010.12.014 · Zbl 1221.54059 · doi:10.1016/j.na.2010.12.014
[9] doi:10.1016/0362-546X(90)90111-S · Zbl 0714.47040 · doi:10.1016/0362-546X(90)90111-S
[10] doi:10.1016/j.aml.2011.10.047 · Zbl 1241.54034 · doi:10.1016/j.aml.2011.10.047
[11] doi:10.1016/j.aml.2010.02.011 · Zbl 1251.54058 · doi:10.1016/j.aml.2010.02.011
[12] doi:10.2140/pjm.1969.30.475 · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[13] doi:10.1016/j.jmaa.2006.03.016 · Zbl 1117.47039 · doi:10.1016/j.jmaa.2006.03.016
[14] doi:10.1016/j.na.2009.01.116 · Zbl 1179.54053 · doi:10.1016/j.na.2009.01.116
[15] doi:10.1090/S0002-9904-1968-11971-8 · Zbl 0159.19903 · doi:10.1090/S0002-9904-1968-11971-8
[16] doi:10.1016/0022-247X(89)90214-X · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X
[17] doi:10.1016/S0362-546X(02)00146-3 · Zbl 1029.54049 · doi:10.1016/S0362-546X(02)00146-3
[18] doi:10.1090/S0002-9939-99-05318-6 · Zbl 0948.47058 · doi:10.1090/S0002-9939-99-05318-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.