×

Complements, index theorem, and minimal log discrepancies of foliated surface singularities. (English) Zbl 1539.14031

In recent years, works of P. Cascini and C. Spicer [Invent. Math. 225, No. 2, 603–690 (2021; Zbl 1492.14025); “On the MMP for rank one foliations on threefolds”, Preprint, arXiv:2012.11433] provide a description of the global birational geometry of foliations on varieties of dimension at most three. This is due mainly to the Foliated Minimal Model Program. On the other hand, a lot remains to be said about the local classification of the singularities of foliations.
The main result of this paper goes in this direction, giving the boundedness of local complements for foliated surfaces, stated as follows:
Theorem. Let \(\epsilon\) be a non-negative real number and \(\Gamma \subset [0,1]\) be a DCC set. Then there exists a positive integer \(N\) depending only on \(\epsilon\) and \(\Gamma\) satisfying the following: Assume that \((X \ni x, \mathcal{F}, B)\) is an \(\epsilon\)-log canonical foliated surface germ such that \(B \in \Gamma\). Then \((X \ni x, \mathcal{F}, B)\) has an \((\epsilon, N)\)-complement \((X \ni x, \mathcal{F}, B^+)\).
This means that
\((X \ni x, \mathcal{F}, B^+)\) is \(\epsilon\)-log canonical;
\(NB^+ \geq \lfloor (N+1)\{B\}\rfloor + N \lfloor B \rfloor\);
\(N(K_\mathcal{F} + B^+) \sim 0\) over a neighborhood of \(z\).

The authors then show some consequences of this result:
A negative answer to a question posed by Cascini and Spicer, by showing the existence of foliated surfaces which do not have a 1-complement.
A local index theorem for foliated surfaces, or more precisely given \(a \in \mathbb{Q}_{\geq 0}\) and \(\Gamma \subset [0,1] \cap \mathbb{Q}\) a DCC set, they show that there exists \(I \in \mathbb{Z} > 0\) depending only on \(a\) and \(\Gamma\) satisfying the following: assume that \((X \ni x, \mathbb{F}, B)\) is a foliated surface germ such that \(B \in \Gamma\) and \(\mathrm{mld}(X \ni x, \mathbb{F}, B) = a\) (\(\mathrm{mld}\) stands for minimal log discrepancy). Then \(I(K_\mathcal{F} + B)\) is Cartier near \(x\).
A characterization of the set of minimal log discrepancies of foliated surface singularities, or more precisely given \(\Gamma \subset [0,1]\) a set,
\begin{align*} \{\mathrm{mld}(X \ni x, \mathcal{F}, B) \mid \dim X & = 2, \mathrm{rank} \mathcal{F} = 1, B \in \Gamma \} \\ & = \left\{0, \frac{1 - \sum c_i \gamma_i}{n} \mid n \in \mathbb{N}^+, c_i \in \mathbb{N}, \gamma_i \in \Gamma \right\} \cap [0,1]. \end{align*}
The existence of a uniform rational log canonical polytope for foliated surfaces.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
37F75 Dynamical aspects of holomorphic foliations and vector fields
14B05 Singularities in algebraic geometry

Citations:

Zbl 1492.14025

References:

[1] Alexeev, V., Two two-dimensional terminations, Duke Math. J., 69, 3, 527-545 (1993) · Zbl 0791.14006 · doi:10.1215/S0012-7094-93-06922-0
[2] Ambro, F., The set of toric minimal log discrepancies, Cent. Eur. J. Math., 4, 3, 358-370 (2006) · Zbl 1129.14070 · doi:10.2478/s11533-006-0013-x
[3] Ambro, F.; Ene, V.; Miller, E., On the Classification of Toric Singularities, Combinatorial Aspects of Commutative Algebra. Contemporary Mathematics, 1-3 (2009), Providence: American Mathematical Society, Providence · doi:10.1090/conm/502/09852
[4] Ambro, F., Cascini, P., Shokurov, V., Spicer, C.: Positivity of the moduli part (2021). arXiv:2111.00423
[5] Araujo, C.: Mini-course on Fano foliations. https://www.cirm-math.fr/RepOrga/2251/Slides/Araujo_3.pdf
[6] Araujo, C.; Druel, S., On Fano foliations, Adv. Math., 238, 70-118 (2013) · Zbl 1282.14085 · doi:10.1016/j.aim.2013.02.003
[7] Birkar, C., Anti-pluricanonical systems on Fano varieties, Ann. Math., 190, 2, 345-463 (2019) · Zbl 1470.14078 · doi:10.4007/annals.2019.190.2.1
[8] Birkar, C., Singularities of linear systems and boundedness of Fano varieties, Ann. Math., 193, 2, 347-405 (2021) · Zbl 1469.14085 · doi:10.4007/annals.2021.193.2.1
[9] Birkar, C.; Cascini, P.; Hacon, CD; McKernan, J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23, 2, 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[10] Birkar, C.; Zhang, D-Q, Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. Inst. Hautes Études Sci., 123, 283-331 (2016) · Zbl 1348.14038 · doi:10.1007/s10240-016-0080-x
[11] Blache, R., The structure of l.c. surfaces of Kodaira dimension zero. I, J. Algebraic Geom., 4, 1, 137-179 (1995) · Zbl 0836.14018
[12] Brunella, M.: Foliations on complex projective surfaces. In: Dynamical Systems. Part II. Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi. Scuola Normale Superiore, Pisa (2003) · Zbl 1048.01001
[13] Brunella, M., Birational Geometry of Foliations. IMPA Monographs (2015), Cham: Springer, Cham · Zbl 1310.14002 · doi:10.1007/978-3-319-14310-1
[14] Cascini, P., Spicer, C.: Problems to think about. https://www.cirm-math.fr/RepOrga/2251/Slides/Questions_MMP.pdf
[15] Cascini, P., Spicer, C.: On the MMP for rank one foliations on threefolds (2020). arXiv:2012.11433 · Zbl 1492.14025
[16] Cascini, P.; Spicer, C., MMP for co-rank one foliations on threefolds, Invent. Math., 225, 2, 603-690 (2021) · Zbl 1492.14025 · doi:10.1007/s00222-021-01037-1
[17] Chen, G.; Han, J., Boundedness of \((\epsilon , n)\)-complements for surfaces, Adv. Math., 383 (2021) · Zbl 1473.14029 · doi:10.1016/j.aim.2021.107703
[18] Chen, G., Han, J., Liu, J., Xie, L.: Minimal model program for algebraically integrable foliations and generalized pairs (2023). arXiv:2309.15823
[19] Chen, Y.-A.: ACC for foliated log canonical thresholds (2022). arXiv:2202.11346
[20] Chen, Y-A, Log canonical foliation singularities on surfaces, Math. Nachr., 296, 8, 3222-3256 (2023) · Zbl 1523.32052 · doi:10.1002/mana.202100215
[21] Druel, S., On foliations with nef anti-canonical bundle, Trans. Amer. Math. Soc., 369, 11, 7765-7787 (2017) · Zbl 1388.14056 · doi:10.1090/tran/6873
[22] Druel, S., Codimension 1 foliations with numerically trivial canonical class on singular spaces, Duke Math. J., 170, 1, 95-203 (2021) · Zbl 1470.14009 · doi:10.1215/00127094-2020-0041
[23] Friedman, R., Algebraic Surfaces and Holomorphic Vector Bundles Universitext (1998), New York: Springer, New York · Zbl 0902.14029 · doi:10.1007/978-1-4612-1688-9
[24] Hacon, CD; Langer, A., On birational boundedness of foliated surfaces, J. Reine Angew. Math., 770, 205-229 (2021) · Zbl 1462.14013 · doi:10.1515/crelle-2020-0009
[25] Hacon, CD; Liu, J., Existence of flips for generalized lc pairs, Cambridge J. Math., 11, 4, 795-828 (2023) · Zbl 1540.14081 · doi:10.4310/CJM.2023.v11.n4.a1
[26] Hacon, CD; McKernan, J.; Xu, C., ACC for log canonical thresholds, Ann. Math., 180, 2, 523-571 (2014) · Zbl 1320.14023 · doi:10.4007/annals.2014.180.2.3
[27] Hacon, CD; Xu, C., Boundedness of log Calabi-Yau pairs of Fano type, Math. Res. Lett., 22, 6, 1699-1716 (2015) · Zbl 1362.14018 · doi:10.4310/MRL.2015.v22.n6.a8
[28] Han, J., Liu, J.: On termination of flips and exceptionally non-canonical singularities (2022). arXiv:2209.13122
[29] Han, J., Liu, J., Shokurov, V.V.: ACC for minimal log discrepancies of exceptional singularities (2019). arXiv:1903.04338
[30] Han, J., Liu, J., Luo, Y.: ACC for minimal log discrepancies of terminal threefolds (2022). arXiv:2202.05287
[31] Han, J.; Luo, Y., On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu, 22, 6, 2907-2930 (2023) · Zbl 1527.14027 · doi:10.1017/S1474748022000299
[32] Jiang, C., A gap theorem for minimal log discrepancies of noncanonical singularities in dimension three, J. Algebraic Geom., 30, 4, 759-800 (2021) · Zbl 1509.14035 · doi:10.1090/jag/759
[33] Kawakita, M., The index of a threefold canonical singularity, Amer. J. Math., 137, 1, 271-280 (2015) · Zbl 1338.14040 · doi:10.1353/ajm.2015.0006
[34] Kawamata, Y., The minimal discrepancy of a \(3\)-fold terminal singularity. Appendix to V.V. Shokurov, \(3\)-fold log flips, Izv. Math., 56, 1, 193-200 (1992)
[35] Keel, S., Basepoint freeness for nef and big line bundles in positive characteristic, Ann. Math., 149, 1, 253-286 (1999) · Zbl 0954.14004 · doi:10.2307/121025
[36] Kollár, J., ét al. (eds.): Flip and Abundance for Algebraic Threefolds. Astérisque, vol. 211. Société Mathématique de France, Paris (1992)
[37] Kollár, J.; Mori, S., Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[38] Liu, J.; Luo, Y.; Meng, F., On global ACC for foliated threefolds, Trans. Amer. Math. Soc., 376, 12, 8939-8972 (2023) · Zbl 07772579
[39] Liu, J.; Xiao, L., An optimal gap of minimal log discrepancies of threefold non-canonical singularities, J. Pure Appl. Algebra, 225, 9 (2021) · Zbl 1485.14029 · doi:10.1016/j.jpaa.2021.106674
[40] Liu, L., Luo, Y.: ACC for minimal log discrepancies of \(\frac{5}{6} \)-lc threefolds (2022). arXiv:2207.04610
[41] Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics (2006), Oxford: Oxford University Press, Oxford · Zbl 1103.14001
[42] Markushevich, D., Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci. Univ. Tokyo, 3, 2, 445-456 (1996) · Zbl 0871.14003
[43] McQuillan, M., Canonical models of foliations, Pure Appl. Math. Q., 4, 3, 877-1012 (2008) · Zbl 1166.14010 · doi:10.4310/PAMQ.2008.v4.n3.a9
[44] Mustaţă, M., Nakamura, Y.: A boundedness conjecture for minimal log discrepancies on a fixed germ. In: Budur, N. t al. (eds.) Local and Global Methods in Algebraic Geometry. Contemporary Mathematics, vol. 712, pp. 287-306. American Mathematical Society, Providence (2018) · Zbl 1397.14008
[45] Nakamura, Y., On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Math. J., 65, 1, 165-187 (2016) · Zbl 1400.14046 · doi:10.1307/mmj/1457101816
[46] Nakamura, Y., Shibata, K.: Shokurov’s index conjecture for quotient singularities (2022). arXiv:2209.04845
[47] Nakamura, Y.; Shibata, K., Inversion of adjunction for quotient singularities, Algebr. Geom., 9, 2, 214-251 (2022) · Zbl 1495.14027 · doi:10.14231/AG-2022-007
[48] Lupiński, M.: Singularities of Foliations on Algebraic Surfaces (in Polish). Master’s thesis (2021)
[49] Lupiński, M.: Personal communication
[50] Prokhorov, YuG; Shokurov, VV, Towards the second main theorem on complements, J. Algebraic Geom., 18, 1, 151-199 (2009) · Zbl 1159.14020 · doi:10.1090/S1056-3911-08-00498-0
[51] Shokurov, V.V.: Problems about Fano varieties. In: Birational Geometry of Algebraic Varieties: Open Problems, pp. 30-32. The Taniguchi Foundation (1988)
[52] Shokurov, VV, \(3\)-fold log flips, Izv. Math., 56, 1, 105-203 (1992)
[53] Shokurov, V.V.: Existence and boundedness of \(n\)-complements (2020). arXiv:2012.06495
[54] Spicer, C., Higher dimensional foliated Mori theory, Compositio Math., 156, 1, 1-38 (2020) · Zbl 1428.14025 · doi:10.1112/S0010437X19007681
[55] Spicer, C.; Svaldi, R., Local and global applications of the minimal model program for co-rank 1 foliations on threefolds, J. Eur. Math. Soc. (JEMS), 24, 11, 3969-4025 (2022) · Zbl 1515.14025 · doi:10.4171/JEMS/1173
[56] Xu, Y.: Some Results about the index conjecture for log Calabi-Yau pairs (2019). arXiv:1905.00297
[57] Zhang, D-Q, Logarithmic enriques surfaces, J. Math. Kyoto Univ., 31, 2, 419-466 (1991) · Zbl 0759.14029
[58] Zhang, D-Q, Logarithmic enriques surfaces. II, J. Math. Kyoto Univ., 33, 2, 357-397 (1993) · Zbl 0804.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.