×

On global ACC for foliated threefolds. (English) Zbl 07772579

Summary: In this paper, we prove the rational coefficient case of the global ACC for foliated threefolds. Specifically, we consider any lc foliated log Calabi-Yau triple \((X,\mathcal{F},B)\) of dimension 3 whose coefficients belong to a set \(\Gamma\) of rational numbers satisfying the descending chain condition, and prove that the coefficients of \(B\) belong to a finite set depending only on \(\Gamma \). To prove our main result, we introduce the concept of generalized foliated quadruples, which is a mixture of foliated triples and Birkar-Zhang’s generalized pairs. With this concept, we establish a canonical bundle formula for foliations in any dimension. As for applications, we extend Shokurov’s global index conjecture in the classical MMP to foliated triples and prove this conjecture for threefolds with nonzero boundaries and for surfaces. Additionally, we introduce the theory of rational polytopes for functional divisors on foliations and prove some miscellaneous results.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
37F75 Dynamical aspects of holomorphic foliations and vector fields

References:

[1] Abramovich, D., Weak semistable reduction in characteristic 0, Invent. Math., 241-273 (2000) · Zbl 0958.14006 · doi:10.1007/s002229900024
[2] Alexeev, Valery, Boundedness and \(K^2\) for log surfaces, Internat. J. Math., 779-810 (1994) · Zbl 0838.14028 · doi:10.1142/S0129167X94000395
[3] F. Ambro, P. Cascini, V. V. Shokurov, and C. Spicer, Positivity of the moduli part, 2111.00423.
[4] K. Ascher, D. Bejleri, H. Blum, K. DeVleming, G. Inchiostro, Y. Liu, and X. Wang, Moduli of boundary polarized Calabi-Yau pairs, 2307.06522.
[5] Birkar, Caucher, Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes \'{E}tudes Sci., 325-368 (2012) · Zbl 1256.14012 · doi:10.1007/s10240-012-0039-5
[6] Birkar, Caucher, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2), 345-463 (2019) · Zbl 1470.14078 · doi:10.4007/annals.2019.190.2.1
[7] Birkar, Caucher, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[8] Birkar, Caucher, Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. Inst. Hautes \'{E}tudes Sci., 283-331 (2016) · Zbl 1348.14038 · doi:10.1007/s10240-016-0080-x
[9] Boucksom, S\'{e}bastien, The pseudo-effective cone of a compact K\"{a}hler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 201-248 (2013) · Zbl 1267.32017 · doi:10.1090/S1056-3911-2012-00574-8
[10] Brunella, Marco, Birational geometry of foliations, IMPA Monographs, xiv+130 pp. (2015), Springer, Cham · Zbl 1310.14002 · doi:10.1007/978-3-319-14310-1
[11] Cano, Felipe, Reduction of the singularities of codimension one singular foliations in dimension three, Ann. of Math. (2), 907-1011 (2004) · Zbl 1088.32019 · doi:10.4007/annals.2004.160.907
[12] Cano, F., Hypersurfaces int\'{e}grales des feuilletages holomorphes, Ann. Inst. Fourier (Grenoble), 49-72 (1992) · Zbl 0762.32018
[13] P. Cascini and C. Spicer, On the MMP for rank one foliations on threefolds, 2012.11433. · Zbl 1492.14025
[14] Cascini, Paolo, MMP for co-rank one foliations on threefolds, Invent. Math., 603-690 (2021) · Zbl 1492.14025 · doi:10.1007/s00222-021-01037-1
[15] Chen, Guodu, Boundedness of \((\epsilon , n)\)-complements for surfaces, Adv. Math., Paper No. 107703, 40 pp. (2021) · Zbl 1473.14029 · doi:10.1016/j.aim.2021.107703
[16] Chen, Yen-An, Boundedness of minimal partial du Val resolutions of canonical surface foliations, Math. Ann., 557-573 (2021) · Zbl 1484.32034 · doi:10.1007/s00208-021-02195-6
[17] Chen, Yen-An, Log canonical foliation singularities on surfaces, Math. Nachr., 3222-3256 (2023) · Zbl 1523.32052
[18] Chen, Yen-An, Boundedness of Canonical Models of Foliated Surfaces, 64 pp. (2021), ProQuest LLC, Ann Arbor, MI
[19] Y.-A. Chen, ACC for foliated log canonical thresholds, 2202.11346.
[20] Campana, Fr\'{e}d\'{e}ric, Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math. Inst. Hautes \'{E}tudes Sci., 1-49 (2019) · Zbl 1423.14109 · doi:10.1007/s10240-019-00105-w
[21] Druel, St\'{e}phane, On foliations with nef anti-canonical bundle, Trans. Amer. Math. Soc., 7765-7787 (2017) · Zbl 1388.14056 · doi:10.1090/tran/6873
[22] Druel, St\'{e}phane, Codimension 1 foliations with numerically trivial canonical class on singular spaces, Duke Math. J., 95-203 (2021) · Zbl 1470.14009 · doi:10.1215/00127094-2020-0041
[23] Filipazzi, Stefano, On the connectedness principle and dual complexes for generalized pairs, Forum Math. Sigma, Paper No. e33, 39 pp. (2023) · Zbl 1527.14026 · doi:10.1017/fms.2023.25
[24] Filipazzi, Stefano, Generalized Pairs in Birational Geometry, 104 pp. (2019), ProQuest LLC, Ann Arbor, MI
[25] Floris, Enrica, Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN, 1465-1492 (2014) · Zbl 1325.14018 · doi:10.1093/imrn/rns260
[26] Greb, Daniel, Movable curves and semistable sheaves, Int. Math. Res. Not. IMRN, 536-570 (2016) · Zbl 1342.14022 · doi:10.1093/imrn/rnv126
[27] Gongyo, Yoshinori, On the minimal model theory for dlt pairs of numerical log Kodaira dimension zero, Math. Res. Lett., 991-1000 (2011) · Zbl 1246.14026 · doi:10.4310/MRL.2011.v18.n5.a16
[28] Hacon, Christopher D., On birational boundedness of foliated surfaces, J. Reine Angew. Math., 205-229 (2021) · Zbl 1462.14013 · doi:10.1515/crelle-2020-0009
[29] C. D. Hacon and J. Liu, Existence of flips for generalized lc pairs, 2105.13590. · Zbl 1540.14081
[30] Hacon, Christopher D., ACC for log canonical thresholds, Ann. of Math. (2), 523-571 (2014) · Zbl 1320.14023 · doi:10.4007/annals.2014.180.2.3
[31] J. Han, J. Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, 1903.04338.
[32] J. Han and Y. Luo, On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu. (2022), 1-24.
[33] Z. Hu, Log abundance of the moduli b-divisors for lc-trivial fibrations, 2003.14379.
[34] Jiang, Chen, A gap theorem for minimal log discrepancies of noncanonical singularities in dimension three, J. Algebraic Geom., 759-800 (2021) · Zbl 1509.14035 · doi:10.1090/jag/759
[35] J. Jiao, J. Liu, and L. Xie, On generalized lc pairs with b-log abundant nef part, 2202.11256.
[36] Kawamata, Yujiro, Algebraic geometry, Sendai, 1985. Introduction to the minimal model problem, Adv. Stud. Pure Math., 283-360 (1987), North-Holland, Amsterdam · Zbl 0672.14006 · doi:10.2969/aspm/01010283
[37] Kodaira, K., On compact analytic surfaces. II, III, Ann. of Math. (2), 563-626; 78 (1963), 1-40 (1963) · Zbl 0171.19601 · doi:10.2307/1970500
[38] J. Koll\'ar, et al., Flip and abundance for algebraic threefolds, Ast\'erisque 211 (1992).
[39] Koll\'{a}r, J\'{a}nos, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, viii+254 pp. (1998), Cambridge University Press, Cambridge · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[40] McQuillan, Michael, Canonical models of foliations, Pure Appl. Math. Q., 877-1012 (2008) · Zbl 1166.14010 · doi:10.4310/PAMQ.2008.v4.n3.a9
[41] McQuillan, Michael, Almost \'{e}tale resolution of foliations, J. Differential Geom., 279-319 (2013) · Zbl 1295.32041
[42] Miyaoka, Yoichi, Algebraic geometry, Bowdoin, 1985. Deformations of a morphism along a foliation and applications, Proc. Sympos. Pure Math., 245-268 (1985), Amer. Math. Soc., Providence, RI · Zbl 0659.14008 · doi:10.1090/pspum/046.1/927960
[43] Nakayama, Noboru, Zariski-decomposition and abundance, MSJ Memoirs, xiv+277 pp. (2004), Mathematical Society of Japan, Tokyo · Zbl 1061.14018
[44] Ou, Wenhao, On generic nefness of tangent sheaves, Math. Z., Paper No. 58, 23 pp. (2023) · Zbl 1524.14035 · doi:10.1007/s00209-023-03306-6
[45] Pereira, Jorge Vit\'{o}rio, On the height of foliated surfaces with vanishing Kodaira dimension, Publ. Mat., 363-373 (2005) · Zbl 1079.37045 · doi:10.5565/PUBLMAT\_49205\_06
[46] Prokhorov, Yu. G., Towards the second main theorem on complements, J. Algebraic Geom., 151-199 (2009) · Zbl 1159.14020 · doi:10.1090/S1056-3911-08-00498-0
[47] Seidenberg, A., Reduction of singularities of the differential equation \(A\,dy=B\,dx\), Amer. J. Math., 248-269 (1968) · Zbl 0159.33303 · doi:10.2307/2373435
[48] Shokurov, V. V., Prelimiting flips, Proc. Steklov Inst. Math.. Tr. Mat. Inst. Steklova, 82-219 (2003) · Zbl 1082.14019
[49] Spicer, Calum, Higher-dimensional foliated Mori theory, Compos. Math., 1-38 (2020) · Zbl 1428.14025 · doi:10.1112/s0010437x19007681
[50] Spicer, Calum, Local and global applications of the Minimal Model Program for co-rank 1 foliations on threefolds, J. Eur. Math. Soc. (JEMS), 3969-4025 (2022) · Zbl 1515.14025 · doi:10.4171/jems/1173
[51] Spicer, Calum, Effective generation for foliated surfaces: results and applications, J. Reine Angew. Math., 45-84 (2023) · Zbl 1506.14013 · doi:10.1515/crelle-2022-0067
[52] Ueno, Kenji, Classification of algebraic varieties. I, Compositio Math., 277-342 (1973) · Zbl 0284.14015
[53] Y. Xu, Some results about the index conjecture for log Calabi-Yau pairs, 1905.00297.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.