×

Forward sensitivity analysis and mode dependent control for closure modeling of Galerkin systems. (English) Zbl 1538.65334

Summary: Model reduction by projection-based approaches is often associated with losing some of the important features that contribute towards the dynamics of the retained scales. As a result, a mismatch occurs between the predicted trajectories of the original system and the truncated one. We put forth a framework to apply a continuous time control signal in the latent space of the reduced order model (ROM) to account for the effect of truncation. We set the control input using parameterized models by following energy transfer principles. Our methodology relies on observing the system behavior in the physical space and using the projection operator to restrict the feedback signal into the latent space. Then, we leverage the forward sensitivity method (FSM) to derive relationships between the feedback and the desired mode-dependent control. We test the performance of the proposed approach using two test cases, corresponding to viscous Burgers and vortex merger problems at high Reynolds number. Results show that the ROM trajectory with the applied FSM control closely matches its target values in both the data-dense and data-sparse regimes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence
76F20 Dynamical systems approach to turbulence
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N06 Finite difference methods for boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76M20 Finite difference methods applied to problems in fluid mechanics
93B30 System identification

References:

[1] Ahmed, S. E.; Pawar, S.; San, O.; Rasheed, A.; Iliescu, T.; Noack, B. R., On closures for reduced order models—a spectrum of first-principle to machine-learned avenues, Phys. Fluids, 33, Article 091301 pp. (2021)
[2] Ahmed, S. E.; San, O.; Rasheed, A.; Iliescu, T.; Veneziani, A., Physics guided machine learning for variational multiscale reduced order modeling (2022), arXiv preprint
[3] Akhtar, I.; Wang, Z.; Borggaard, J.; Iliescu, T., A new closure strategy for proper orthogonal decomposition reduced-order models, J. Comput. Nonlinear Dyn., 7 (2012)
[4] Alexanderian, A., Optimal experimental design for infinite-dimensional bayesian inverse problems governed by PDEs: a review, Inverse Probl., 37, Article 043001 pp. (2021) · Zbl 1461.62129
[5] Aubry, N., On the hidden beauty of the proper orthogonal decomposition, Theor. Comput. Fluid Dyn., 2, 339-352 (1991) · Zbl 0732.76044
[6] Balajewicz, M.; Tezaur, I.; Dowell, E., Minimal subspace rotation on the stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible navier-stokes equations, J. Comput. Phys., 321, 224-241 (2016) · Zbl 1349.76171
[7] Benosman, M., Model-based vs data-driven adaptive control: an overview, Int. J. Adapt. Control Signal Process., 32, 753-776 (2018) · Zbl 1396.93068
[8] Benosman, M.; Borggaard, J.; San, O.; Kramer, B., Learning-based robust stabilization for reduced-order models of 2d and 3d boussinesq equations, Appl. Math. Model., 49, 162-181 (2017) · Zbl 1480.93332
[9] Bergmann, M.; Bruneau, C. H.; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 516-538 (2009) · Zbl 1409.76099
[10] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575 (1993)
[11] Beucler, T.; Pritchard, M.; Rasp, S.; Ott, J.; Baldi, P.; Gentine, P., Enforcing analytic constraints in neural networks emulating physical systems, Phys. Rev. Lett., 126, Article 098302 pp. (2021)
[12] Borggaard, J.; Iliescu, T.; Wang, Z., Artificial viscosity proper orthogonal decomposition, Math. Comput. Model., 53, 269-279 (2011) · Zbl 1211.76077
[13] Brunton, S. L.; Noack, B. R., Closed-loop turbulence control: progress and challenges, Appl. Mech. Rev., 67 (2015)
[14] Cazemier, W.; Verstappen, R.; Veldman, A., Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys. Fluids, 10, 1685-1699 (1998)
[15] Chakraborty, S., Transfer learning based multi-fidelity physics informed deep neural network, J. Comput. Phys., 426, Article 109942 pp. (2021) · Zbl 07510057
[16] Cordier, L.; Noack, B. R.; Tissot, G.; Lehnasch, G.; Delville, J.; Balajewicz, M.; Daviller, G.; Niven, R. K., Identification strategies for model-based control, Exp. Fluids, 54, 1-21 (2013)
[17] Cuomo, S.; Di Cola, V. S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F., Scientific machine learning through physics-informed neural networks: where we are and what’s next (2022), arXiv preprint · Zbl 07568980
[18] Dada, G. P.; Armaou, A., Generalized SVD reduced-order observers for nonlinear systems, (2020 American Control Conference (ACC) (2020), IEEE), 3473-3478
[19] De, S.; Britton, J.; Reynolds, M.; Skinner, R.; Jansen, K.; Doostan, A., On transfer learning of neural networks using bi-fidelity data for uncertainty propagation, Int. J. Uncertain. Quantificat., 10 (2020) · Zbl 1498.68231
[20] Eroglu, F. G.; Kaya, S.; Rebholz, L. G., A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows, Comput. Methods Appl. Mech. Eng., 325, 350-368 (2017) · Zbl 1439.76065
[21] Garg, S.; Chakraborty, S.; Hazra, B., Physics-integrated hybrid framework for model form error identification in nonlinear dynamical systems, Mech. Syst. Signal Process., 173, Article 109039 pp. (2022)
[22] Giere, S.; Iliescu, T.; John, V.; Wells, D., SUPG reduced order models for convection-dominated convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 289, 454-474 (2015) · Zbl 1425.65111
[23] Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T., Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theor. Appl. Fract. Mech., 106, Article 102447 pp. (2020)
[24] Greydanus, S.; Dzamba, M.; Yosinski, J., Hamiltonian neural networks (2019), arXiv preprint
[25] Grimberg, S.; Farhat, C.; Youkilis, N., On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows, J. Comput. Phys., 419, Article 109681 pp. (2020) · Zbl 07507241
[26] Holmes, P.; Lumley, J. L.; Berkooz, G.; Rowley, C. W., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (2012), Cambridge University Press · Zbl 1251.76001
[27] Huang, Y.; Kramer, B., Balanced reduced-order models for iterative nonlinear control of large-scale systems, IEEE Control Syst. Lett., 5, 1699-1704 (2020)
[28] Iliescu, T.; Wang, Z., Variational multiscale proper orthogonal decomposition: Navier-stokes equations, Numer. Methods Partial Differ. Equ., 30, 641-663 (2014) · Zbl 1452.76048
[29] Ivagnes, A.; Demo, N.; Rozza, G., Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation (2022), arXiv preprint
[30] Karniadakis, G. E.; Kevrekidis, I. G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L., Physics-informed machine learning, Nat. Rev. Phys., 3, 422-440 (2021)
[31] Kashinath, K.; Mustafa, M.; Albert, A.; Wu, J.; Jiang, C.; Esmaeilzadeh, S.; Azizzadenesheli, K.; Wang, R.; Chattopadhyay, A.; Singh, A., Physics-informed machine learning: case studies for weather and climate modelling, Philos. Trans. R. Soc. A, 379, Article 20200093 pp. (2021)
[32] Koc, B.; Mou, C.; Liu, H.; Wang, Z.; Rozza, G.; Iliescu, T., Verifiability of the data-driven variational multiscale reduced order model, J. Sci. Comput., 93, 1-26 (2022) · Zbl 1503.65234
[33] Kramer, B.; Grover, P.; Boufounos, P.; Nabi, S.; Benosman, M., Sparse sensing and DMD-based identification of flow regimes and bifurcations in complex flows, SIAM J. Appl. Dyn. Syst., 16, 1164-1196 (2017) · Zbl 1373.37185
[34] Kravaris, C., Functional observers for nonlinear systems, IFAC-PapersOnLine, 49, 505-510 (2016)
[35] Lakshmivarahan, S.; Lewis, J. M., Forward sensitivity approach to dynamic data assimilation, Adv. Meteorol., 2010 (2010)
[36] Lakshmivarahan, S.; Lewis, J. M.; Jabrzemski, R., Forecast Error Correction Using Dynamic Data Assimilation (2017), Springer: Springer New York · Zbl 1364.86002
[37] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., Model Order Reduction in Fluid Dynamics: Challenges and Perspectives, Reduced Order Methods for Modeling and Computational Reduction, 235-273 (2014) · Zbl 1395.76058
[38] Ling, J.; Kurzawski, A.; Templeton, J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807, 155-166 (2016) · Zbl 1383.76175
[39] Manohar, K.; Brunton, B. W.; Kutz, J. N.; Brunton, S. L., Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns, IEEE Control Syst. Mag., 38, 63-86 (2018) · Zbl 1477.93128
[40] Maulik, R.; San, O.; Rasheed, A.; Vedula, P., Subgrid modelling for two-dimensional turbulence using neural networks, J. Fluid Mech., 858, 122-144 (2019) · Zbl 1415.76405
[41] Meng, X.; Karniadakis, G. E., A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems, J. Comput. Phys., 401, Article 109020 pp. (2020) · Zbl 1454.76006
[42] Mohan, A. T.; Lubbers, N.; Livescu, D.; Chertkov, M., Embedding hard physical constraints in neural network coarse-graining of 3D turbulence (2020), arXiv preprint
[43] Mou, C.; Koc, B.; San, O.; Rebholz, L. G.; Iliescu, T., Data-driven variational multiscale reduced order models, Comput. Methods Appl. Mech. Eng., 373, Article 113470 pp. (2021) · Zbl 1506.65158
[44] Niazi, M. U.B.; Deplano, D.; Canudas-de Wit, C.; Kibangou, A. Y., Scale-free estimation of the average state in large-scale systems, IEEE Control Syst. Lett., 4, 211-216 (2019)
[45] Noack, B. R.; Morzynski, M.; Tadmor, G., Reduced-Order Modelling for Flow Control, vol. 528 (2011), Springer-Verlag: Springer-Verlag Berlin · Zbl 1220.76008
[46] Novati, G.; de Laroussilhe, H. L.; Koumoutsakos, P., Automating turbulence modelling by multi-agent reinforcement learning, Nat. Mach. Intell., 3, 87-96 (2021)
[47] Pacciarini, P.; Rozza, G., Stabilized reduced basis method for parametrized advection-diffusion pdes, Comput. Methods Appl. Mech. Eng., 274, 1-18 (2014) · Zbl 1296.65165
[48] Papapicco, D.; Demo, N.; Girfoglio, M.; Stabile, G.; Rozza, G., The neural network shifted-proper orthogonal decomposition: a machine learning approach for non-linear reduction of hyperbolic equations, Comput. Methods Appl. Mech. Eng., 392, Article 114687 pp. (2022) · Zbl 1507.65208
[49] Pastoor, M.; Henning, L.; Noack, B. R.; King, R.; Tadmor, G., Feedback shear layer control for bluff body drag reduction, J. Fluid Mech., 608, 161-196 (2008) · Zbl 1145.76306
[50] Pawar, S.; San, O., Equation-free surrogate modeling of geophysical flows at the intersection of machine learning and data assimilation (2022), arXiv preprint
[51] Pawar, S.; San, O.; Aksoylu, B.; Rasheed, A.; Kvamsdal, T., Physics guided machine learning using simplified theories, Phys. Fluids, 33, Article 011701 pp. (2021)
[52] Pawar, S.; San, O.; Nair, A.; Rasheed, A.; Kvamsdal, T., Model fusion with physics-guided machine learning: projection-based reduced-order modeling, Phys. Fluids, 33, Article 067123 pp. (2021)
[53] Pawar, S.; San, O.; Vedula, P.; Rasheed, A.; Kvamsdal, T., Multi-fidelity information fusion with concatenated neural networks, Sci. Rep., 12, 1-13 (2022)
[54] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 550-591 (2018) · Zbl 1458.65003
[55] Poveda, J. I.; Benosman, M.; Teel, A. R., Hybrid online learning control in networked multiagent systems: a survey, Int. J. Adapt. Control Signal Process., 33, 228-261 (2019) · Zbl 1417.93046
[56] Rahman, S. M.; Ahmed, S. E.; San, O., A dynamic closure modeling framework for model order reduction of geophysical flows, Phys. Fluids, 31, Article 046602 pp. (2019)
[57] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[58] Rempfer, D.; Fasel, H., The dynamics of coherent structures in a flat-plate boundary layer, (Advances in Turbulence IV (1993), Springer: Springer Berlin), 73-77
[59] Riffaud, S.; Bergmann, M.; Farhat, C.; Grimberg, S.; Iollo, A., The DGDD method for reduced-order modeling of conservation laws, J. Comput. Phys., 437, Article 110336 pp. (2021) · Zbl 07505919
[60] Sadamoto, T.; Ishizaki, T.; Imura, J.i., Low-dimensional functional observer design for linear systems via observer reduction approach, (52nd IEEE Conference on Decision and Control (2013), IEEE), 776-781
[61] San, O.; Iliescu, T., Proper orthogonal decomposition closure models for fluid flows: Burgers equation, Int. J. Numer. Anal. Model. Ser. B, 5, 285-305 (2014)
[62] San, O.; Iliescu, T., A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation, Adv. Comput. Math., 41, 1289-1319 (2015) · Zbl 1327.37028
[63] San, O.; Rasheed, A.; Kvamsdal, T., Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution, GAMM-Mitt., 44, Article e202100007 pp. (2021) · Zbl 1533.65205
[64] San, O.; Staples, A. E., A coarse-grid projection method for accelerating incompressible flow computations, J. Comput. Phys., 233, 480-508 (2013)
[65] Sirisup, S.; Karniadakis, G. E., A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 92-116 (2004) · Zbl 1136.76412
[66] Sirovich, L., Turbulence and the dynamics of coherent structures. I. Coherent structures, Q. Appl. Math., 45, 561-571 (1987) · Zbl 0676.76047
[67] Snyder, W.; Mou, C.; Liu, H.; San, O.; DeVita, R.; Iliescu, T., Reduced order model closures: a brief tutorial, (Recent Advances in Mechanics and Fluid-Structure Interaction with Applications: The Bong Jae Chung Memorial Volume (2022), Springer), 167-193
[68] Stabile, G.; Ballarin, F.; Zuccarino, G.; Rozza, G., A reduced order variational multiscale approach for turbulent flows, Adv. Comput. Math., 45, 2349-2368 (2019) · Zbl 1435.65165
[69] Strazzullo, M.; Girfoglio, M.; Ballarin, F.; Iliescu, T.; Rozza, G., Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows, Int. J. Numer. Methods Eng., 123, 3148-3178 (2022) · Zbl 07767903
[70] Tai, K. S.; Bailis, P.; Valiant, G., Equivariant transformer networks, (International Conference on Machine Learning (2019), PMLR), 6086-6095
[71] Taira, K.; Brunton, S. L.; Dawson, S. T.; Rowley, C. W.; Colonius, T.; McKeon, B. J.; Schmidt, O. T.; Gordeyev, S.; Theofilis, V.; Ukeiley, L. S., Modal analysis of fluid flows: an overview, AIAA J., 55, 4013-4041 (2017)
[72] Taira, K.; Hemati, M. S.; Brunton, S. L.; Sun, Y.; Duraisamy, K.; Bagheri, S.; Dawson, S. T.; Yeh, C. A., Modal analysis of fluid flows: applications and outlook, AIAA J., 58, 998-1022 (2020)
[73] Vlachas, P. R.; Arampatzis, G.; Uhler, C.; Koumoutsakos, P., Multiscale simulations of complex systems by learning their effective dynamics, Nat. Mach. Intell., 1-8 (2022)
[74] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237-240, 10-26 (2012) · Zbl 1253.76050
[75] Zanna, L.; Bolton, T., Data-driven equation discovery of ocean mesoscale closures, Geophys. Res. Lett., 47, Article e2020GL088376 pp. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.