×

On variational-hemivariational inequalities with nonconvex constraints. (English) Zbl 1537.49006

In this paper the authors study the existence of solutions of a class of variational-hemivariational inequalities in which the set of admissible elements is star-shaped with respect to a ball and not necessarily convex. More precisely, given a reflexive Banach space \(V\), compactly embedded in a Hilbert space \(H\) via an embedding \(i:V\to H\), a non-empty closed set \(C_0\subset H\), start-shaped w.r.t. the closed ball \(\bar B(u_0,\rho)\) consider \[ \begin{cases} \text{find }u\in C\text{ s.t.} \\ \langle A(u),v-u \rangle + j^0(i(u); i(v) - i(u)) +\phi(u)-\phi(v)\ge \langle f,v-u\rangle \quad \forall v\in u+ T_C(u) \end{cases} \] where \(A:V\to V^*\) is an operator, \(C= C_0\cap V\), \(T_C(u)=T_{C_0}(u)\cap V\) and \(T_{C_0}(u)\) being the Clarke tangent cone of \(C_0\) at \(u\).
Under suitable continuity and growth assumptions on \(A\), \(j^0\) and \(\phi\), and star-shapedness assumption on \(C\), using a penalization method, the authors show that for any \(f\in V^*\) the aforementioned problem admits a solution.
As an application, the authors implement their results in a semipermeablity model for heat conduction problems.

MSC:

49J40 Variational inequalities
Full Text: DOI

References:

[1] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Anal-ysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. · Zbl 1262.49001
[2] Z. Naniewicz, P. D.Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Decker, New York, 1995. · Zbl 0968.49008
[3] P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer, Berlin, 1993. · Zbl 0826.73002
[4] L.V. Nguyen, X. Qin, The minimal time function associated with a collection of sets, ESAIM Control Optim. Calc. Var. 26 (2020), 93. · Zbl 1459.49008
[5] M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Pure Appl. Math., Chapman & Hall/CRC Press, Boca Raton-London, 2018. · Zbl 1384.49002
[6] O. Chadli, J. Gwinner, N. Ovcharova, On semicoercive variational-hemivariational inequalities -existence, approximation, and regularization, Vietnam. J. Math. 46 (2018), 329-342. · Zbl 1388.49005
[7] N. Ovcharova, L. Banz, Coupling regularization and adaptive hp-BEM for the solution of a delamination problem, Numer. Math. 137 (2017), 303-337. · Zbl 1393.74246
[8] Z. Naniewicz, Hemivariational inequality approach to constrained problems for star-shaped admissible sets, J. Optim. Theory Appl. 83 (1994), 97-112. · Zbl 0808.49019
[9] D. Goeleven, On the hemivariational inequality approach to nonconvex constrained problems in the theory of von Kárman plates, Z. Angew. Math. Mech. 75 (1995), 861-866. · Zbl 0870.49005
[10] D. Goeleven, Noncoercive hemivariational inequality approach to constrained problems for star-shaped ad-missible sets, J. Global Optim. 9 (1996), 121-140. · Zbl 0870.49006
[11] L. Gasínski, Z. Liu, S. Migórski, A. Ochal, Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl. 164 (2015), 514-533. · Zbl 1440.47048
[12] Z. Peng, L. Gasiński, S. Migórski, A. Ochal, A class of evolution variational inequalities with nonconvex constraints, Optimization, 68 (2019), 1881-1895. · Zbl 07111797
[13] S. Migórski, L. Fengzhen, Constrained variational-hemivariational inequalities on nonconvex star-shaped sets, Mathematics, 8 (2020), 1824. DOI: 10.3390/math8101824. · doi:10.3390/math8101824
[14] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145. · Zbl 0888.49007
[15] S.Y. Cho, A monotone Bregan projection algorithm for fixed point and equilibrium problems in a reflexive Banach space, Filomat, 34 (2020), 1487-1497. · Zbl 1502.47084
[16] X. Qin, S.Y. Cho, Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. 37 (2017), 488-502. · Zbl 1389.47163
[17] L. Liu, On the resolution of variational inequality problems with a double-hierarchical structure, J. Nonlinear Convex Anal. 21 (2020), 377-386. · Zbl 07347508
[18] S.Y. Cho, A convergence theorem for generalized mixed equilibrium problems and multivalued asymptoti-cally nonexpansive mappings, J. Nonlinear Convex Anal. 21 (2020), 1017-1026. · Zbl 1460.90131
[19] B. Tan, S.Y. Cho, Inertial projection and contraction methods for pseudomonotone variational inequalities with non-Lipschitz operators and applications, Appl. Anal. (2021), doi: 10.1080/00036811.2021.1979219. · Zbl 1518.47109 · doi:10.1080/00036811.2021.1979219
[20] O. Chadli, Q.H. Ansari, J.-C. Yao, Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations, J. Optim. Theory Appl. 168 (2016), 410-440. · Zbl 1336.49007
[21] N. Hadjisavvas, H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization 59 (2010), 147-160. · Zbl 1250.47050
[22] J. Gwinner, A note on pseudomonotone functions, regularization, and relaxed coerciveness, Nonlinear Anal. 30 (1997), 4217-4227. · Zbl 0911.49007
[23] H. Brézis, Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115-175. · Zbl 0169.18602
[24] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. · Zbl 0582.49001
[25] F.H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer-Verlag, London, 2013. · Zbl 1277.49001
[26] O. Chadli, Q.H. Ansari, S. Al-Homidan, Existence of solutions for nonlinear implicit differential equations: an equilibrium problem approach, Numer. Funct. Anal. Optim. 37 (2016), 1385-1419. · Zbl 1364.34087
[27] Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, USA, 2003. · Zbl 1040.46001
[28] G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976. · Zbl 0331.35002
[29] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36. · Zbl 0574.73015
[30] S. Migórski, A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear Anal. 57 (2004), 579-596. · Zbl 1050.35043
[31] S. Carl, VK. Le, D. Motreanu, Nonsmooth Variational Problems and Their Inequalities: Comparison Princi-ples and Applications, Springer, New York, 2007. · Zbl 1109.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.