×

Nonlocal half-ball vector operators on bounded domains: Poincaré inequality and its applications. (English) Zbl 1537.46028

Summary: This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection-diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
26A33 Fractional derivatives and integrals

References:

[1] Adams, R. A. and Fournier, J. F., Sobolev Spaces, 2nd edn. (Academic Press, 2003). · Zbl 1098.46001
[2] Allen, M., Caffarelli, L. and Vasseur, A., A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal.221 (2016) 603-630. · Zbl 1338.35428
[3] Arnold, D., Finite Element Exterior Calculus, , Vol. 93 (SIAM, 2018). · Zbl 1506.65001
[4] Askari, E., Bobaru, F., Lehoucq, R., Parks, M., Silling, S. and Weckner, O., Peridynamics for multiscale materials modeling, J. Phys. Conf. Ser.125 (2008) 012078.
[5] Bakunin, O. G., Turbulence and Diffusion: Scaling Versus Equations (Springer Science & Business Media, 2008). · Zbl 1172.76001
[6] Ball, J. and Murat, F., \( W^{1 , p}\)-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. · Zbl 0549.46019
[7] Bartholdi, L., Schick, T., Smale, N. and Smale, S., Hodge theory on metric spaces, Found. Comput. Math.12 (2012) 1-48. · Zbl 1366.58001
[8] Bellido, J. C., Cueto, J. and Mora-Corral, C., Nonlocal gradients in bounded domains motivated by continuum mechanics: Fundamental theorem of calculus and embeddings, Advances in Nonlinear Analysis12(1) (2023) 20220316. · Zbl 1541.26017
[9] Benson, D. A., Wheatcraft, S. W. and Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res.36 (2000) 1403-1412.
[10] Bourgain, J., Brezis, H. and Mironescu, P., Another look at Sobolev spaces, in Optimal Control and Partial Differential Equation Conf. (IOS Press, 2001), pp. 439-455. · Zbl 1103.46310
[11] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, (Springer, 2011). · Zbl 1220.46002
[12] Brué, E., Calzi, M., Comi, G. E. and Stefani, G., A distributional approach to fractional Sobolev spaces and fractional variation: Asymptotics II, C. R. Math.360 (2022) 589-626. · Zbl 1501.46031
[13] Buades, A., Coll, B. and Morel, J.-M., Image denoising methods. A new nonlocal principle, SIAM Rev.52 (2010) 113-147. · Zbl 1182.62184
[14] D’Elia, M., Du, Q., Gunzburger, M. and Lehoucq, R., Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes, Comput. Methods Appl. Math.17 (2017) 707-722. · Zbl 1436.35307
[15] D’Elia, M., Gulian, M., Mengesha, T. and Scott, J. M., Connections between nonlocal operators: From vector calculus identities to a fractional Helmholtz decomposition, Fract. Calc. Appl. Anal.25 (2022) 2488-2531. · Zbl 1503.26006
[16] D’Elia, M., Gulian, M., Olson, H. and Karniadakis, G. E., Towards a unified theory of fractional and nonlocal vector calculus, Fract. Calc. Appl. Anal.24 (2021) 1301-1355. · Zbl 1498.26008
[17] Demkowicz, L., Führer, T., Heuer, N. and Tian, X., The double adaptivity paradigm: (How to circumvent the discrete inf-sup conditions of Babuška and Brezzi), Comput. Math. Appl.95 (2021) 41-66. · Zbl 1524.65787
[18] Du, Q., Nonlocal Modeling, Analysis, and Computation, , Vol. 94 (SIAM, 2019). · Zbl 1423.00007
[19] Du, Q., Gunzburger, M., Lehoucq, R. B. and Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev.54 (2012) 667-696. · Zbl 1422.76168
[20] Du, Q., Gunzburger, M., Lehoucq, R. B. and Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci.23 (2013) 493-540. · Zbl 1266.26020
[21] Du, Q. and Tian, X., Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling, SIAM J. Appl. Math.78 (2018) 1536-1552. · Zbl 1394.45002
[22] Du, Q. and Tian, X., Mathematics of smoothed particle hydrodynamics: A study via nonlocal Stokes equations, Found. Comput. Math.20 (2020) 801-826. · Zbl 1448.76112
[23] Du, Q., Tian, X. and Zhou, Z., Nonlocal diffusion models with consistent local and fractional limits, A^3N^2M: Approximation, applications, and analysis of nonlocal, nonlinear models, Proceedings of the 50th John H. Barrett memorial lectures, Cham: Springer International Publishing, 2023, 175-213. · Zbl 1532.65110
[24] Evans, L. and Gariepy, R., Measure Theory and Fine Properties of Functions, Revised Edition (Chapman and Hall/CRC, 2015). · Zbl 1310.28001
[25] Fiscella, A., Servadei, R. and Valdinoci, E., Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math.40 (2015) 235-253. · Zbl 1346.46025
[26] Fuentes, M., Kuperman, M. and Kenkre, V., Nonlocal interaction effects on pattern formation in population dynamics, Phys. Rev. Lett.91 (2003) 158104.
[27] G. F. F. Gounoue, \( L^2\)-theory for nonlocal operators on domains, Ph.D. thesis, Bielefeld University (2020).
[28] Grafakos, L., Classical Fourier Analysis, (Springer, 2014). · Zbl 1304.42001
[29] Gunzburger, M. and Lehoucq, R. B., A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul.8 (2010) 1581-1598. · Zbl 1210.35057
[30] Ha, Y. D. and Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech.78 (2011) 1156-1168.
[31] Haar, A. and Radu, P., A new nonlocal calculus framework. Helmholtz decompositions, properties, and convergence for nonlocal operators in the limit of the vanishing horizon, Partial Differ. Equ. Appl.3 (2022) 1-20. · Zbl 07532101
[32] A. N. Hirani, Discrete exterior calculus, Ph.D. thesis, California Institute of Technology (2003).
[33] Kassmann, M. and Mimica, A., Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc.19 (2017) 983-1011. · Zbl 1371.35316
[34] Kilbas, A. A., Marichev, O. and Samko, S., Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, 1993). · Zbl 0818.26003
[35] Klafter, J. and Sokolov, I. M., Anomalous diffusion spreads its wings, Phys. World18 (2005) 29.
[36] T. D. Le, Nonlocal exterior calculus on Riemannian manifolds, Ph.D. thesis, Pennsylvania State University (2013).
[37] Lee, H. and Du, Q., Asymptotically compatible SPH-like particle discretizations of one dimensional linear advection models, SIAM J. Numer. Anal.57 (2019) 127-147. · Zbl 1409.76114
[38] Lee, H. and Du, Q., Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications, ESAIM Math. Model. Numer. Anal.54 (2020) 105-128. · Zbl 1450.76031
[39] Leng, Y., Tian, X., Demkowicz, L., Gomez, H. and Foster, J. T., A Petrov-Galerkin method for nonlocal convection-dominated diffusion problems, J. Comput. Phys.452 (2022) 110919. · Zbl 07517745
[40] Meerschaert, M. M., Mortensen, J. and Wheatcraft, S. W., Fractional vector calculus for fractional advection-dispersion, Phys. A367 (2006) 181-190.
[41] Mengesha, T. and Du, Q., The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A144 (2014) 161-186. · Zbl 1381.35177
[42] Mengesha, T. and Du, Q., Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elasticity116 (2014) 27-51. · Zbl 1297.74051
[43] Mengesha, T. and Du, Q., Characterization of function spaces of vector fields and an application in nonlinear peridynamics, Nonlinear Anal.140 (2016) 82-111. · Zbl 1353.46027
[44] Sabzikar, F., Meerschaert, M. M. and Chen, J., Tempered fractional calculus, J. Comput. Phys.293 (2015) 14-28. · Zbl 1349.26017
[45] Scalas, E., Gorenflo, R. and Mainardi, F., Fractional calculus and continuous-time finance, Phys. A284 (2000) 376-384.
[46] Shieh, T.-T. and Spector, D. E., On a new class of fractional partial differential equations, Adv. Calc. Var.8 (2015) 321-336. · Zbl 1330.35510
[47] Shieh, T.-T. and Spector, D. E., On a new class of fractional partial differential equations II, Adv. Calc. Var.11 (2018) 289-307. · Zbl 1451.35257
[48] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids48 (2000) 175-209. · Zbl 0970.74030
[49] Silling, S. A., Stability of peridynamic correspondence material models and their particle discretizations, Comput. Methods Appl. Mech. Engrg.322 (2017) 42-57. · Zbl 1439.74017
[50] Silling, S. A., Epton, M., Weckner, O., Xu, J. and Askari, E., Peridynamic states and constitutive modeling, J. Elasticity88 (2007) 151-184. · Zbl 1120.74003
[51] Stinga, P. R. and Vaughan, M., One-sided fractional derivatives, fractional Laplacians, and weighted Sobolev spaces, Nonlinear Anal.193 (2020) 111505. · Zbl 1436.26007
[52] Tian, H., Ju, L. and Du, Q., Nonlocal convection-diffusion problems and finite element approximations, Comput. Methods Appl. Mech. Engrg.289 (2015) 60-78. · Zbl 1423.74925
[53] Tian, H., Ju, L. and Du, Q., A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization, Comput. Methods Appl. Mech. Engrg.320 (2017) 46-67. · Zbl 1439.65134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.