×

Hodge theory on metric spaces. Appendix by Anthony W. Baker. (English) Zbl 1366.58001

Summary: Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision.
Appendix B by Anthony Baker discusses a separable, compact metric space with infinite-dimensional \(\alpha \)-scale homology.

MSC:

58A14 Hodge theory in global analysis
55P55 Shape theory
57M50 General geometric structures on low-dimensional manifolds
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in Colloque ”Analyse et Topologie” en l’Honneur de Henri Cartan, Orsay, 1974. Astérisque, No. 32–33 (Soc. Math. France, Paris, 1976), pp. 43–72.
[2] M. Belkin, P. Niyogi, Convergence of Laplacian eigenmaps. Preprint, May (2008). · Zbl 1157.68056
[3] M. Belkin, E. De Vito, L. Rosasco, Random estimates of operators and their spectral properties for learning. Working paper. · Zbl 1242.62059
[4] R. Bott, L.W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. (Springer, New York, 1982). · Zbl 0496.55001
[5] G. Carlsson, Topology and data, Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009). · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[6] G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76(1), 1–12 (2008). · Zbl 1477.68463 · doi:10.1007/s11263-007-0056-x
[7] F. Chazal, S.Y. Oudot, Towards persistence-based reconstruction in Euclidean spaces, in Computational geometry (SCG’08) (ACM, New York, 2008), pp. 232–241. · Zbl 1271.57058
[8] J. Cheeger, M. Gromov, L 2-cohomology and group cohomology, Topology 25(2), 189–215 (1986). · Zbl 0597.57020 · doi:10.1016/0040-9383(86)90039-X
[9] F.R.K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, vol. 92 (Published for the Conference Board of the Mathematical Sciences, Washington, 1997). · Zbl 0867.05046
[10] R.R. Coifman, M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006). · Zbl 1095.94007 · doi:10.1016/j.acha.2006.04.004
[11] W. Dicks, T. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedic. 93, 121–137 (2002). · Zbl 1021.47014 · doi:10.1023/A:1020381532489
[12] M.P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications (Birkhäuser, Boston, 1992). Translated from the second Portuguese edition by Francis Flaherty.
[13] J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Am. J. Math. 98(1), 79–104 (1976). · Zbl 0324.58001 · doi:10.2307/2373615
[14] J. Dodziuk, De Rham-Hodge theory for L 2-cohomology of infinite coverings, Topology 16(2), 157–165 (1977). · Zbl 0348.58001 · doi:10.1016/0040-9383(77)90013-1
[15] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L 2-invariants and the Atiyah conjecture, Commun. Pure Appl. Math. 56(7), 839–873 (2003). Dedicated to the memory of Jürgen K. Moser. · Zbl 1036.58017 · doi:10.1002/cpa.10076
[16] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17, 240–255 (1945). · Zbl 0061.41106 · doi:10.1007/BF02566245
[17] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28(4), 511–533 (2002). Discrete and computational geometry and graph drawing (Columbia, SC, 2001). · Zbl 1011.68152 · doi:10.1007/s00454-002-2885-2
[18] R. Forman, A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c, 35 pp. (electronic) 2002. · Zbl 1048.57015
[19] J. Friedman, Computing Betti numbers via combinatorial Laplacians, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996 (ACM, New York, 1996), pp. 386–391. · Zbl 0917.57019
[20] G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7(3), 1005–1028 (2008). · Zbl 1181.35006 · doi:10.1137/070698592
[21] J.-C. Hausmann, On the Vietoris–Rips complexes and a cohomology theory for metric spaces, in Prospects in Topology, Princeton, NJ, 1994, Ann. of Math. Stud., vol. 138 (Princeton Univ. Press, Princeton, 1995), pp. 175–188. · Zbl 0928.55003
[22] W.V.D. Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1941). · Zbl 0024.39703
[23] X. Jiang, L.-H. Lim, Y. Yao, Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program. 127(1), 203–244 (2011). · Zbl 1210.90142 · doi:10.1007/s10107-010-0419-x
[24] S. Lang, Analysis II (Addison-Wesley, Reading, 1969). · Zbl 0176.00504
[25] A.B. Lee, K.S. Pedersen, D. Mumford, The non-linear statistics of high-contrast patches in natural images, Int. J. Comput. Vis. 54, 83–103 (2003). · Zbl 1070.68661 · doi:10.1023/A:1023705401078
[26] P. Linnell, T. Schick, Finite group extensions and the Atiyah conjecture, J. Am. Math. Soc. 20(4), 1003–1051 (2007). · Zbl 1127.55001 · doi:10.1090/S0894-0347-07-00561-9
[27] J. Lott, W. Lück, L 2-topological invariants of 3-manifolds, Invent. Math. 120(1), 15–60 (1995). · Zbl 0876.57050 · doi:10.1007/BF01241121
[28] W. Lück, Approximating L 2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4(4), 455–481 (1994). · Zbl 0853.57021 · doi:10.1007/BF01896404
[29] W. Lück, L 2 -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 44 (Springer, Berlin, 2002). 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
[30] J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).
[31] P. Pansu, Introduction to L 2 Betti numbers, in Riemannian geometry, Waterloo, ON, 1993. Fields Inst. Monogr., vol. 4 (Amer. Math. Soc, Providence, 1996), pp. 53–86. · Zbl 0848.53025
[32] T. Schick, Integrality of L 2-Betti numbers, Math. Ann. 317(4), 727–750 (2000). · Zbl 0967.55007 · doi:10.1007/PL00004421
[33] T. Schick, L 2-determinant class and approximation of L 2-Betti numbers, Trans. Am. Math. Soc. 353(8), 3247–3265 (2001). · Zbl 0979.55004 · doi:10.1090/S0002-9947-01-02699-X
[34] S. Smale, D.-X. Zhou, Geometry on probability spaces. Constr. Approx. 30(3), 311–323 (2009). · Zbl 1187.68270 · doi:10.1007/s00365-009-9070-2
[35] S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, T. Poggio, Mathematics of the neural response. Found. Comput. Math. 10(1), 67–91 (2010). · Zbl 1185.68813 · doi:10.1007/s10208-009-9049-1
[36] E.H. Spanier, Algebraic Topology (Springer, New York, 1981). Corrected reprint.
[37] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol. 94 (Springer, New York, 1983). Corrected reprint of the 1971 edition. · Zbl 0516.58001
[38] R.L. Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, vol. 32 (American Mathematical Society, Providence, 1979). Reprint of 1963 edition. · Zbl 0511.57001
[39] D. Zhou, B. Schölkopf, Regularization on discrete spaces, in Pattern Recognition, Proc. 27th DAGM Symposium, Berlin (2005), pp. 361–368.
[40] A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33(2), 249–274 (2005). · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.