×

On inverse problems for a strongly damped wave equation on compact manifolds. (English) Zbl 1537.35417

Summary: We consider a strongly damped wave equation on compact manifolds, both with and without boundaries, and formulate the corresponding inverse problems. For closed manifolds, we prove that the metric can be uniquely determined, up to an isometry, from the knowledge of the source-to-solution map. Similarly, for manifolds with boundaries, we prove that the metric can be uniquely determined, up to an isometry, from partial knowledge of the Dirichlet-to-Neumann map. The key point is to retrieve the spectral information of the Laplace-Beltrami operator, from the Laplace transform of the measurements. Further we show that the metric can be determined up to an isometry, using a single measurement in both scenarios.

MSC:

35R30 Inverse problems for PDEs
58J45 Hyperbolic equations on manifolds

References:

[1] Acosta, S.; Uhlmann, G.; Zhai, J., Nonlinear ultrasound imaging modeled by a westervelt equation, SIAM J. Appl. Math., 82, 2, 408-426, 2022 · Zbl 1486.35458 · doi:10.1137/21M1431813
[2] Belishev, MI; Kurylev, YV, To the reconstruction of a riemannian manifold via its spectral data (bc-method), Commun. Partial Differ. Eqs., 17, 5-6, 767-804, 1992 · Zbl 0812.58094 · doi:10.1080/03605309208820863
[3] Borg, G., Eine umkehrung der sturm-liouvilleschen eigenwertaufgabe, Acta Math., 78, 1, 1-96, 1946 · Zbl 0063.00523 · doi:10.1007/BF02421600
[4] Burago, D., Ivanov, S., Lassas, M., Lu, J.: Quantitative stability of gel’fand’s inverse boundary problem. arXiv e-prints, pages arXiv-2012, (2020)
[5] Canuto, B.; Kavian, O., Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32, 5, 963-986, 2001 · Zbl 0981.35096 · doi:10.1137/S003614109936525X
[6] Choulli, M.; Stefanov, P., Stability for the multi-dimensional borg-levinson theorem with partial spectral data, Commun. Partial Differ. Eqs., 38, 3, 455-476, 2013 · Zbl 1302.35433 · doi:10.1080/03605302.2012.747538
[7] Colombo, F., An inverse problem for the strongly damped wave equation with memory, Nonlinearity, 20, 3, 659, 2007 · Zbl 1214.35078 · doi:10.1088/0951-7715/20/3/006
[8] Colombo, F.; Guidetti, D., Identification of the memory kernel in the strongly damped wave equation by a flux condition, Commun. Pure Appl. Anal., 8, 2, 601-620, 2008 · Zbl 1191.45008 · doi:10.3934/cpaa.2009.8.601
[9] Eptaminitakis, N., Stefanov, P.: Weakly nonlinear geometric optics for the westervelt equation and recovery of the nonlinearity. arXiv:2208.13945, (2022)
[10] Feizmohammadi, A., Ghosh, T., Krupchyk, K., Uhlmann, G.: Fractional anisotropic Calderón problem on closed riemannian manifolds. arXiv:2112.03480, (2021)
[11] Fu, S.-R., Yao, P.-F., Yu, Y.: Inverse problem of recoverying a time-dependent nonlinearity appearing in third-order nonlinear acoustic equations. arXiv:2308.10805, (2023)
[12] Ghidaglia, JM; Marzocchi, A., Longtime behaviour of strongly damped wave equations, global attractors and their dimension, SIAM J. Math. Anal., 22, 4, 879-895, 1991 · Zbl 0735.35015 · doi:10.1137/0522057
[13] Helin, T.; Lassas, M.; Oksanen, L.; Saksala, T., Correlation based passive imaging with a white noise source, J. Math. Pures Appl., 116, 132-160, 2018 · Zbl 1401.35343 · doi:10.1016/j.matpur.2018.05.001
[14] Helin, T.; Lassas, M.; Ylinen, L.; Zhang, Z., Inverse problems for heat equation and space-time fractional diffusion equation with one measurement, J. Differ. Equ., 269, 9, 7498-7528, 2020 · Zbl 1443.35168 · doi:10.1016/j.jde.2020.05.022
[15] Ikehata, R.; Todorova, G.; Yordanov, B., Wave equations with strong damping in hilbert spaces, J. Differ. Equ., 254, 8, 3352-3368, 2013 · Zbl 1272.35157 · doi:10.1016/j.jde.2013.01.023
[16] Imanuvilov, OY; Uhlmann, G.; Yamamoto, M., Inverse boundary value problem by measuring dirichlet data and neumann data on disjoint sets, Inverse Probl., 27, 8, 2011 · Zbl 1222.35213 · doi:10.1088/0266-5611/27/8/085007
[17] Isozaki, H.: Some remarks on the multi-dimensional borg-levinson theorem. J. Equ. Deriv. Partiell pages 1-6 (1989) · Zbl 0708.35094
[18] Kachalov, A., Kurylev, Y., Lassas, M.: Inverse boundary spectral problems. CRC Press (2001) · Zbl 1037.35098
[19] Kalantarov, V.; Zelik, S., Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differ. Equ., 247, 4, 1120-1155, 2009 · Zbl 1183.35053 · doi:10.1016/j.jde.2009.04.010
[20] Kaltenbacher, B.; Rundell, W., On the identification of the nonlinearity parameter in the westervelt equation from boundary measurements, Inverse Probl. Imaging, 15, 5, 865-891, 2021 · Zbl 1472.35453 · doi:10.3934/ipi.2021020
[21] Kaltenbacher, B.; Rundell, W., Determining damping terms in fractional wave equations, Inverse Probl., 38, 7, 2022 · Zbl 1491.35462 · doi:10.1088/1361-6420/ac6b31
[22] Kaltenbacher, B., Rundell, W.: Nonlinearity parameter imaging in the frequency domain. arXiv:2303.09796, (2023)
[23] Kaltenbacher, B.; Rundell, W., On the simultaneous reconstruction of the nonlinearity coefficient and the sound speed in the westervelt equation, Inverse Probl., 39, 10, 2023 · Zbl 1527.35494 · doi:10.1088/1361-6420/aceef2
[24] Kaltenbacher, B.; Thalhammer, M., Fundamental models in nonlinear acoustics part i. analytical comparison, Math. Model. Methods Appl. Sci., 28, 12, 2403-2455, 2018 · Zbl 1421.35226 · doi:10.1142/S0218202518500525
[25] Katchalov, A.; Kurylev, Y., Multidimensional inverse problem with incomplete boundary spectral data, Commun. Partial Differ. Equ., 23, 1-2, 27-59, 1998 · doi:10.1080/03605309808821338
[26] Katchalov, A.; Kurylev, Y.; Lassas, M.; Mandache, N., Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., 20, 2, 419, 2004 · Zbl 1073.35209 · doi:10.1088/0266-5611/20/2/007
[27] Kawashima, S.; Shibata, Y., Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Commun. Math. Phys., 148, 189-208, 1992 · Zbl 0779.35066 · doi:10.1007/BF02102372
[28] Kian, Y.; Li, Z.; Liu, Y.; Yamamoto, M., The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Annal., 380, 3-4, 1465-1495, 2021 · Zbl 1472.35455 · doi:10.1007/s00208-020-02027-z
[29] Kian, Y.; Oksanen, L.; Soccorsi, E.; Yamamoto, M., Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differ. Equ., 264, 2, 1146-1170, 2018 · Zbl 1376.35099 · doi:10.1016/j.jde.2017.09.032
[30] Kim, S., Moon, S., Seo, I.: Reconstruction of the initial data from the solutions of damped wave equations. arXiv:2308.03362, (2023)
[31] Krupchyk, K.; Kurylev, Y.; Lassas, M., Inverse spectral problems on a closed manifold, J. Math. Pures Appl., 90, 1, 42-59, 2008 · Zbl 1146.58020 · doi:10.1016/j.matpur.2008.02.009
[32] Krupchyk, K., Päivärinta, L.: A Borg-Levinson theorem for higher order elliptic operators. arXiv:1011.1995, (2010)
[33] Lassas, M., Nursultanov, M., Oksanen, L., Ylinen, L.: Disjoint data inverse problem on manifolds with quantum chaos bounds. arXiv:2303.13342, (2023)
[34] Lassas, M.; Oksanen, L., An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Probl., 26, 8, 2010 · Zbl 1197.35323 · doi:10.1088/0266-5611/26/8/085012
[35] Lassas, M.; Oksanen, L., Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163, 6, 1071-1103, 2014 · Zbl 1375.35634 · doi:10.1215/00127094-2649534
[36] Levinson, N.: The inverse sturm-liouville problem. Matematisk Tidsskrift. B, pages 25-30 (1949) · Zbl 0045.36402
[37] Li, L., Zhang, Y.: An inverse problem for the fractionally damped wave equation. arXiv:2307.16065, (2023)
[38] Li, L., Zhang, Y.: Inverse problems for a quasilinear strongly damped wave equation arising in nonlinear acoustics. arXiv:2309.11775, (2023)
[39] Nachman, A.; Sylvester, J.; Uhlmann, G., An n-dimensional borg-levinson theorem, Commun. Math. Phys., 115, 4, 595-605, 1988 · Zbl 0644.35095 · doi:10.1007/BF01224129
[40] Pata, V.; Squassina, M., On the strongly damped wave equation, Commun. Math. Phys., 253, 3, 511-533, 2005 · Zbl 1068.35077 · doi:10.1007/s00220-004-1233-1
[41] El-Sayed, AM; Chankin, AV; Saibene, G.; Hull, S.; Keen, DA, Characterization of transmission data for webster’s horn equation, Inverse Probl., 16, L9-L24, 2000 · Zbl 0965.35188 · doi:10.1088/0266-5611/16/2/102
[42] Rakesh, R.; Sacks, P., Uniqueness for a hyperbolic inverse problem with angular control on the coefficients, J. Inverse Ill-Posed Probl., 19, 1, 107-126, 2011 · Zbl 1279.35124 · doi:10.1515/jiip.2011.025
[43] Stefanov, P.; Uhlmann, G., Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154, 2, 330-358, 1998 · Zbl 0915.35066 · doi:10.1006/jfan.1997.3188
[44] Uhlmann, G.; Zhang, Y., An inverse boundary value problem arising in nonlinear acoustics, SIAM J. Math. Anal., 55, 2, 1364-1404, 2023 · Zbl 1515.35358 · doi:10.1137/22M1492490
[45] Zhang, Y.: Nonlinear acoustic imaging with damping. arXiv:2302.14174, (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.