×

Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. (English) Zbl 1422.37047

Summary: In present work, new form of generalized fifth-order nonlinear integrable equation has been investigated by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test for \(\alpha =\beta \) which implies affirmation toward the complete integrability. Lie symmetry analysis is implemented to obtain the infinitesimals of the group of transformations of underlying equation, which has been further pre-owned to furnish reduced ordinary differential equations. These are then used to establish new abundant exact group-invariant solutions involving various arbitrary constants in a uniform manner.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI

References:

[1] Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[2] Weiss, J.: The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405-1413 (1983) · Zbl 0531.35069 · doi:10.1063/1.525875
[3] Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[4] Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991) · Zbl 0744.35045 · doi:10.1007/978-3-662-00922-2
[5] Gu, C.H.: Soliton Theory and Its Application. Springer, Berlin (1995) · Zbl 0834.35003 · doi:10.1007/978-3-662-03102-5
[6] Kudryashov, N.A.: On types of nonlinear non-integrable equations with exact solutions. Phys. Lett. A 155, 269-275 (1991) · doi:10.1016/0375-9601(91)90481-M
[7] Zhang, H.: Extended Jacobi elliptic function expansion method and its application. Commun. Nonlinear Sci. Numer Simul. 12, 627-635 (2007) · Zbl 1111.35317 · doi:10.1016/j.cnsns.2005.08.003
[8] Hong, B.: New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation. Appl. Math. Comput. 215, 2908-2913 (2009) · Zbl 1180.35459
[9] Abdou, M.A., Soliman, A.A.: Modified extended tanh-function method and its application on nonlinear physical equations. Phy. Lett. A 353, 487-492 (2006) · doi:10.1016/j.physleta.2006.01.013
[10] Zhu, S.: The generalized Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation. Chaos Soliton Fractals 37, 1335-1342 (2008) · Zbl 1142.35597 · doi:10.1016/j.chaos.2006.10.015
[11] Kaur, L., Gupta, R.K.: Kawahara equation and modified Kawahara equation with time dependent coefficients: symmetry analysis and generalized \[\frac{G^{\prime }}{G}\] G′G expansion method. Math. Methods Appl. Sci. 36, 584-600 (2013) · Zbl 1282.35335 · doi:10.1002/mma.2617
[12] Triki, H., Wazwaz, A.M.: A new trial equation method for finding exact chirped soliton solutions of the quintic derivative nonlinear Schr \[\ddot{\text{ o }}\] o¨dinger equation with variable coefficients. Waves Random Complex Media 27, 153-162 (2016) · Zbl 1375.35509 · doi:10.1080/17455030.2016.1212177
[13] Wazwaz, A.M.: A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and travelling wave solutions. Commun. Theor. Phys. 66, 385-388 (2016) · Zbl 1375.35467 · doi:10.1088/0253-6102/66/4/385
[14] Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equations. Nonlinear Dyn. 89, 1727-1732 (2017) · doi:10.1007/s11071-017-3547-5
[15] Cantwell, B.J.: Introduction to Symmetry Analysis Paperback with CD-ROM. Cambridge University Press, Cambridge (2002) · Zbl 1082.34001
[16] Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, Berlin (2008) · Zbl 1013.34004
[17] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) · Zbl 0588.22001 · doi:10.1007/978-1-4684-0274-2
[18] Kaur, L., Gupta, R.K.: Some invariant solutions of field equations with axial symmetry for empty space containing an electrostatic field. Appl. Math. Comp. 231, 560-565 (2014) · Zbl 1410.35228 · doi:10.1016/j.amc.2013.12.120
[19] Zhao, Z., Han, B.: Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. J. Math. Phys. 58, 101514(15pp) (2017) · Zbl 1385.37079 · doi:10.1063/1.5003802
[20] Waclawczyk, M., Grebenev, V.N., Oberlack, M.: Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow. J. Phys. A: Math. Theor. 50, 175501(23pp) (2017) · Zbl 1364.76065 · doi:10.1088/1751-8121/aa62f4
[21] Kumar, V., Kaur, L., Kumar, A., Koksal, M.E.: Lie symmetry based analytical and numerical approach for modified Burgers-KdV equation. Results Phys. 8, 1136-1142 (2018) · doi:10.1016/j.rinp.2018.01.046
[22] Kaur, L., Wazwaz, A.M.: Similarity solutions of field equations with an electromagnetic stress tensor as source. Rom. Rep. Phys. (In Press) (2018)
[23] Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003(4pp) (2011) · Zbl 1228.35190 · doi:10.1088/0031-8949/83/03/035003
[24] Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero-Bogoyavlenskii-Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877-883 (2018) · Zbl 1390.37117 · doi:10.1007/s11071-017-3916-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.