×

Reductive homogeneous spaces of the compact Lie group \(G_2\). (English) Zbl 1537.22050

Albuquerque, Helena (ed.) et al., Non-associative algebras and related topics. NAART II. Selected papers based on the presentations at the 2nd conference, Coimbra, Portugal, July 18–22, 2022. Cham: Springer. Springer Proc. Math. Stat. 427, 29-63 (2023).
Summary: The first author defended her doctoral thesis [Espacios homogéneos reductivos y álgebras no asociativas. La Rioja: Universidad de La Rioja (PhD Thesis) (2001)] in 2001, supervised by P. Benito and A. Elduque. This thesis contained the classification of the Lie-Yamaguti algebras with standard enveloping algebra \(\mathfrak{g}_2\) over fields of characteristic zero, which in particular gives the classification of the homogeneous reductive spaces of the compact Lie group \(G_2\). In this work we revisit this classification from a more geometrical approach. We provide too geometric models of the corresponding homogeneous spaces and make explicit some relations among them.
For the entire collection see [Zbl 1531.17001].

MSC:

22F30 Homogeneous spaces
17B25 Exceptional (super)algebras
53C30 Differential geometry of homogeneous manifolds

References:

[1] Agricola, I., Old and new on the exceptional group \(G_2\), Not. Am. Math. Soc., 55, 8, 922-929 (2008) · Zbl 1194.22023
[2] Agricola, I.; Borówka, A.; Friedrich, T., \(S^6\) and the geometry of nearly Kähler \(6\)-manifolds, Differ. Geom. Appl., 57, 75-86 (2018) · Zbl 1381.53004 · doi:10.1016/j.difgeo.2017.10.007
[3] Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39(2), 145-205 (2002) · Zbl 1026.17001
[4] Benito, P.; Elduque, A.; Martín Herce, F., Irreducible Lie-Yamaguti algebras of generic type, J. Pure Appl. Algebr., 215, 2, 108-130 (2011) · Zbl 1225.17001 · doi:10.1016/j.jpaa.2010.04.003
[5] Benito, P.; Draper, C.; Elduque, A., Models of the octonions and \(G_2\), Linear Algebr. Appl., 371, 333-359 (2003) · Zbl 1102.17300 · doi:10.1016/S0024-3795(03)00478-6
[6] Benito, P.; Draper, C.; Elduque, A., Lie-Yamaguti algebras related to \(\mathfrak{g}_2\), J. Pure Appl. Algebr., 202, 1-3, 22-54 (2005) · Zbl 1179.17004 · doi:10.1016/j.jpaa.2005.01.003
[7] Besse, A.L.: Einstein manifolds. Reprint of the 1987 edition. Classics in Mathematics, p. xii+516. Springer, Berlin (2008) · Zbl 1147.53001
[8] Bobieński, M.; Nurowski, P., Irreducible \(SO(3)\) geometry in dimension five, J. Reine Angew. Math., 605, 51-93 (2007) · Zbl 1128.53017
[9] Boyer, Ch., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs, p. 613. Oxford University Press, New York (2008) · Zbl 1155.53002
[10] Bremner, M.; Hentzel, I., Invariant nonassociative algebra structures on irreducible representations of simple Lie algebras, Exp. Math., 13, 2, 231-256 (2004) · Zbl 1139.17300 · doi:10.1080/10586458.2004.10504536
[11] Bryant, RL, Submanifolds and special structures on the octonians, J. Differ. Geom., 17, 2, 185-232 (1982) · Zbl 0526.53055 · doi:10.4310/jdg/1214436919
[12] Cartan, É., Les systèmes de Pfaff, à cinq variables et les équations aux d?erivées partielles du second ordre, Ann. Sci. Éc. Norm. Supér., 27, 109-192 (1910) · JFM 41.0417.01 · doi:10.24033/asens.618
[13] Cartan, É., Les groupes réels simples, finis et continus, Ann. Sci. École Norm. Supér., 31, 263-355 (1914) · JFM 45.1238.06 · doi:10.24033/asens.676
[14] Cartan, É.: Sur une classe remarquable d’espaces de Riemann. (French) Bull. Soc. Math. France 54, 214-264 (1926) · JFM 52.0425.01
[15] Chen, B.-Y.: Riemannian submanifolds. Handbook of Differential Geometry, vol. I, pp. 187-418. North-Holland, Amsterdam (2000) · Zbl 0968.53002
[16] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces. I. Duke Math. J. 44(4), 745-755 (1977) · Zbl 0368.53038
[17] Dixmier, J.: Certaines algèbres non associatives simples définies par la transvection des formes binaires. (French). J. Reine Angew. Math. 346, 110-128 (1984) · Zbl 0516.17010
[18] Doković, DZ, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebr., 112, 2, 503-524 (1988) · Zbl 0639.17005 · doi:10.1016/0021-8693(88)90104-4
[19] Draper, C.: Espacios homogéneos reductivos y álgebras no asociativas. Ph.D. thesis, Universidad de La Rioja (2001) (Spanish)
[20] Draper Fontanals, C., Notes on \(G_2\): the Lie algebra and the Lie group, Differ. Geom. Appl., 57, 23-74 (2018) · Zbl 1430.17038 · doi:10.1016/j.difgeo.2017.10.011
[21] Draper, C.; Ortega, M.; Palomo, FJ, Affine connections on 3-Sasakian homogeneous manifolds, Math. Z., 294, 1-2, 817-868 (2020) · Zbl 1475.53053 · doi:10.1007/s00209-019-02304-x
[22] Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. (Russian) Mat. Sb. N.S. 30(72), 349-462 (3 plates) (1952) · Zbl 0048.01701
[23] Elduque, A.; Myung, HC, Color algebras and affine connections on \(S^6\), J. Algebr., 149, 1, 234-261 (1992) · Zbl 0773.17001 · doi:10.1016/0021-8693(92)90014-D
[24] Elduque, A.: Lie algebras, Course notes, http://personal.unizar.es/elduque/files/LAElduque.pdf
[25] Engel, F., Ein neues, dem linearen Komplexe analoges Gebilde, Leipz. Ber., 52, 63-76, 220-239 (1900) · JFM 31.0640.02
[26] Enoyoshi, K., Principal curvatures of homogeneous hypersurfaces in a Grassmann manifold \(\widetilde{Gr}_3(\rm Im \, O\rm )\) by the \(G_2\)-action, Tokyo J. Math., 42, 2, 571-584 (2019) · Zbl 1441.53014 · doi:10.3836/tjm/1502179291
[27] Enoyoshi, K.; Tsukada, K., Lagrangian submanifolds of \(S^6\) and the associative Grassmann manifold, Kodai Math. J., 43, 1, 170-192 (2020) · Zbl 1437.53060 · doi:10.2996/kmj/1584345693
[28] Fernández, M.; Gray, A., Riemannian manifolds with structure group \(G_2\), Ann. Mat. Pura Appl., 132, 19-45 (1982) · Zbl 0524.53023 · doi:10.1007/BF01760975
[29] Gray, A.: Six dimensional almost complex manifolds defined by means of three-fold vector cross products. Tohoku Math. J. 21(2), 614-620 (1969) · Zbl 0192.59002
[30] Harvey, F.R.: Spinors and calibrations. Perspectives in Mathematics, vol. 9, pp. xiv+323. Academic Press Inc., Boston (1990). ISBN: 0-12-329650-1 · Zbl 0694.53002
[31] Hitchin, N., The geometry of three-forms in six dimensions, J. Differ. Geom., 55, 547-576 (2000) · Zbl 1036.53042 · doi:10.4310/jdg/1090341263
[32] Klein, S., Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2, Osaka J. Math., 47, 4, 1077-1157 (2010) · Zbl 1215.53046
[33] Kostant, B., The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Am. J. Math., 81, 973-1032 (1959) · Zbl 0099.25603 · doi:10.2307/2372999
[34] Leites, D.; Lozhechnyk, O., Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Algebr. Appl., 583, 195-256 (2019) · Zbl 1464.17023 · doi:10.1016/j.laa.2019.08.026
[35] Mayanskiy, E.: The subalgebras of \(G_2\). arXiv:1611.04070 (2016)
[36] Miyaoka, R., Geometry of \(G_2\) orbits and isoparametric hypersurfaces, Nagoya Math. J., 203, 175-189 (2011) · Zbl 1231.53051 · doi:10.1215/00277630-1331899
[37] Nakata, F.: Homotopy groups of \(G_2/{S}{p}(1)\) and \(G_2/U(2)\). Contemporary Perspectives in Differential Geometry and Its Related Fields, pp. 151-159, 2018. World Scientific Publishing, Hackensack (2017) · Zbl 1394.57032
[38] Nakata, F.: The Penrose type twistor correspondence for the exceptional simple Lie group \(G2\) (Aspects of submanifolds and other related fields). Notes of the Institute of Mathematical Analysis, vol. 2145, pp. 54-68 (2020). https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/255001/1/2145-08.pdf
[39] Onishchik, A.L., Vinberg, È.B. (eds.): Lie groups and Lie algebras, III. Encyclopaedia of Mathematical Sciences, vol. 1, pp. iv+248. Springer, Berlin (1994). ISBN: 3-540-54683-9 · Zbl 0797.22001
[40] Salamon, S., Quaternionic Kähler manifolds, Inven. Math., 67, 1, 143-171 (1982) · Zbl 0486.53048 · doi:10.1007/BF01393378
[41] Schafer, R.D.: An introduction to nonassociative algebras. Pure and Applied Mathematics, vol. 22, pp. x+166. Academic Press, New York (1966) · Zbl 0145.25601
[42] Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, vol. 94, pp. ix+272. Springer, New York-Berlin (1983) · Zbl 0516.58001
[43] Wolf, JA, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14, 1033-1047 (1965) · Zbl 0141.38202
[44] Wolf, JA, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math., 120, 59-148 (1968) · Zbl 0157.52102 · doi:10.1007/BF02394607
[45] Zhevlakov, K.A., Slin’ko, A.M., Shestakov, I.P., Shirshov, A.I.: Rings that are nearly associative. Translated from the Russian by Harry F. Smith. Pure and Applied Mathematics, vol. 104, pp. xi+371. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1982) · Zbl 0487.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.