×

Irreducible Lie-Yamaguti algebras of generic type. (English) Zbl 1225.17001

A Lie-Yamaguti algebra \(V\) is a vector space provided with a bilinear product \(\cdot: V\times V\to V\) and a trilinear one \([\;,\;,\;]: V\times V \times V\to V\) such that:
\[ x\cdot x=0,\quad [x,x,y]=0,\quad \sum_{(x,y,z)}([x,y,z]+(x\cdot y)\cdot z)=0, \]
\[ \sum_{(x,y,z)}[x\cdot y,z,t]=0,\quad [x,y,u\cdot v]=[x,y,u]\cdot v+u\cdot [x,y,v], \]
\[ [x,y,[u,v,w]]=[[x,y,u],v,w]+[u,[x,y,v],w]+[u,v,[x,y,w]], \]
for any \(x,y,z,u,v,w\in V\) (the notation \(\sum_{(x,y,z)}\) meaning cyclic sum).
For any two elements \(x,y\in V\) the linear map \(D(x,y): V\to V\) such that \(D(x,y)z:=[x,y,z]\) is a derivation of \(V\) relative to its binary product and also of \(V\) relative to its ternary operation. The linear span \(D(V,V)\) of all derivations \(D(x,y)\) is a Lie subalgebra of \(\text{gl}(V)\) called the inner derivation algebra of \(V\). When \(V\) is an irreducible module for \(D(V,V)\) we say that \(V\) is an irreducible Lie-Yamaguti algebra.
In a previous paper by the same authors [J. Pure Appl. Algebra 213, No. 5, 795–808 (2009; Zbl 1223.17001)], it has been proved that the classification of irreducible Lie-Yamaguti algebras splits into three non-overlapping types:
Adjoint type: \(V\) is the adjoint module for \(D(V,V)\).
Non-simple type: \(D(V,V)\) is not simple.
Generic Type: both \(g(V)\) (the standard enveloping algebra) and \(D(V,V)\) are simple.
The Lie-Yamaguti algebras of the first two types were classified in a previous work through a generalized Tits construction of Lie algebras. It turns out that the ones of adjoint type are just the simple Lie algebras, and those of Non-simple type can be described through reductive decompositions modeled by the mentioned generalized Tits construction using quaternions, octonions and simple Jordan algebras.
The aim of this paper is the classification of the remaining type: the generic one. At the same time it is investigated the connection of these Lie-Yamaguti algebras with some well-known nonassociative algebraic systems. For instance most irreducible Lie-Yamaguti algebras of generic type appear inside simple Lie algebras as orthogonal complements of subalgebras of derivations of Lie and Jordan algebras and triple systems, Freudenthal and orthogonal triple systems or Jordan and anti-Jordan pairs.

MSC:

17A30 Nonassociative algebras satisfying other identities
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
17A40 Ternary compositions

Citations:

Zbl 1223.17001

References:

[1] Adams, J. F., Lectures on exceptional Lie groups, (Chicago Lectures in Mathematics (1996), University of Chicago Press: University of Chicago Press Chicago, IL) · Zbl 0206.31604
[2] Benito, P.; Draper, C.; Elduque, A., Lie-Yamaguti algebras related to \(G_2\), J. Pure Appl. Algebra, 202, 22-54 (2005) · Zbl 1179.17004
[3] Benito, P.; Elduque, A.; Martín-Herce, F., Irreducible Lie-Yamaguti algebras, J. Pure Appl. Algebra, 213, 795-808 (2009) · Zbl 1223.17001
[4] Benkart, G.; Zelmanov, E., Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math., 126, 1, 1-45 (1996) · Zbl 0871.17024
[5] Dixmier, J., Certaines algèbres non associatives simples définies par la transvection des formes binaires, J. Reine Angew. Math., 346, 110-128 (1984) · Zbl 0516.17010
[6] Dynkin, E. B., Semisimple subalgebras of semisimple Lie algebras, Mat. Sb., 30, 72, 349-462 (1952), 3 plates · Zbl 0048.01701
[7] Elduque, A., New simple Lie superalgebras in characteristic 3, J. Algebra, 296, 1, 196-233 (2006) · Zbl 1170.17005
[8] Elduque, A.; Kamiya, N.; Okubo, S., Simple \((- 1, - 1)\) balanced Freudenthal Kantor triple systems, Glasg. Math. J., 45, 2, 353-372 (2003) · Zbl 1041.17001
[9] Elduque, A.; Myung, H. C., The reductive pair \((B_3, G_2)\) and affine connections on \(S^7\), J. Pure. Appl. Algebra, 86, 155-171 (1993) · Zbl 0784.17010
[10] Faulkner, J. R., Dynkin diagrams for Lie triple systems, J. Algebra, 62, 2, 384-392 (1980) · Zbl 0425.17007
[11] Faulkner, J. R., Identity classification in Triple Systems, J. Algebra, 94, 352-363 (1985) · Zbl 0596.17002
[12] Faulkner, J. R.; Ferrar, J. C., On the structure of symplectic ternary algebras, Nedrl. Akad. Wetensch. Proc. Ser. A 75 = Indag. Math., 34, 247-256 (1972) · Zbl 0248.17004
[13] Faulkner, J. R.; Ferrar, J. C., Simple anti-Jordan pairs, Comm. Algebra, 8, 993-1013 (1980) · Zbl 0447.17003
[14] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0254.17004
[15] Jacobson, N., (Structure and Representation of Jordan Algebras. Structure and Representation of Jordan Algebras, Amer. Math. Soc. Colloquium Publications, vol. XXXIX. (1968), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0218.17010
[16] Kac, V. G., Lie superalgebras, Adv. Math., 26, 1, 8-96 (1977) · Zbl 0366.17012
[17] Kac, V. G., Infinite Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge UK · Zbl 0574.17002
[18] Kikkawa, M., Geometry of homogeneous Lie loops, Hiroshima Math. J., 5, 2, 141-179 (1975) · Zbl 0304.53037
[19] Kinyon, M. K.; Weinstein, A., Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123, 3, 525-550 (2001) · Zbl 0986.17001
[20] Lister, W. G., A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72, 217-242 (1952) · Zbl 0046.03404
[21] Loos, O., (Jordan Pairs. Jordan Pairs, Lectures Notes in Mathematics, vol. 460 (1975), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0301.17003
[22] McCrimmon, K., A taste of Jordan algebras, (Universitytext (2004), Springer-Verlag: Springer-Verlag New York) · Zbl 1044.17001
[23] Meyberg, K., Eine Theorie der Freudenthalschen Tripelsysteme I, II, Nederl. Akad. Wetensch. Proc. Ser. A 71= Indag. Math., 30, 162-174 (1968), 175-190 · Zbl 0261.17002
[24] K. Meyberg, Lectures on algebras and triple systems, Notes on a course of lectures given during the academic year 1971-1972, The University of Virginia, Charlettesville, VA, 1972.; K. Meyberg, Lectures on algebras and triple systems, Notes on a course of lectures given during the academic year 1971-1972, The University of Virginia, Charlettesville, VA, 1972.
[25] Meyberg, K., Trace formulas and derivations in simple Jordan pairs, Comm. Algebra, 12, 11, 1311-1326 (1984) · Zbl 0537.17003
[26] Okubo, S., Triple products and Young-Baxter equation. I. Octonionic and quaternionic triple systems, J. Math. Phys., 34, 7, 3273-3291 (1993) · Zbl 0790.15028
[27] Sagle, A. A., A note on simple anti-commutative algebras obtained from reductive homogeneous spaces, Nagoya Math. J., 31, 105-124 (1968) · Zbl 0155.07101
[28] Schafer, R. D., An Introduction to Nonassociative Algebras (1995), Dover Publications Inc.: Dover Publications Inc. New York, Corrected reprint of the 1966 original · Zbl 0145.25601
[29] Wolf, J. A., The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math., 120, 59-148 (1968), 36#6549. Correction in Acta Math. 152 (1984), 141-142 · Zbl 0157.52102
[30] Yamaguti, K., On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A, 21, 155-160 (1957/1958) · Zbl 0084.18404
[31] Yamaguti, K.; Asano, H., On the Freudenthal’s constructions of exceptional Lie algebras, Proc. Japan Acad., 51, 4, 253-258 (1975) · Zbl 0298.17010
[32] Yamaguti, K.; Ono, A., On the Representations of Freudenthal-Kantor Triple Systems \(U(\delta, \epsilon)\), Bull. Fac. School Ed. Hiroshima Univ. Part II, 7, 43-51 (1974) · Zbl 0563.17005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.