×

Structure of relative genus fields of cubic Kummer extensions. (English) Zbl 1537.11132

Consider the number field \(N={\mathbb Q}(\sqrt[3]{D}, \zeta_3)\), a cubic Kummer extension of the cyclotomic field \(K={\mathbb Q}(\zeta_3)\), where \(D\) is a cube free positive integer and \(\zeta_3\) a primitive cubic root of unity.
The main result of the article establishes the exhaustive list of the 13 forms of the integer \(D\) –in terms of its prime decomposition– for which the Galois group over \(N\) of the relative 3-genus field of the extension \(N/K\) is isomorphic to \({\mathbb Z}/3{\mathbb Z} \times {\mathbb Z}/3{\mathbb Z}\).
The relative 3-genus field of the extension \(N/K\) is the maximal abelian extension of \(K\) contained in the maximal abelian unramified 3-extension of \(N\), and studying its Galois group over \(N\) is a first step into the determination of the structure of \(Cl_3(N)\), the 3-class group of the number field \(N\).
The authors extend in the present article the results of their previous paper [S. Aouissi et al., Period. Math. Hung. 81, No. 2, 250–274 (2020; Zbl 1474.11186)] based on Gerth’s methods, see [F. Gerth III, J. Reine Angew. Math. 278/279, 52–62 (1975; Zbl 0334.12011); J. Number Theory 8, 84–98 (1976; Zbl 0329.12006)]. Moreover, they also study and classify the different extensions \(N/K\) in terms of their conductor.

MSC:

11R11 Quadratic extensions
11R16 Cubic and quartic extensions
11R20 Other abelian and metabelian extensions
11R27 Units and factorization
11R29 Class numbers, class groups, discriminants
11R37 Class field theory

Software:

PARI/GP; OEIS; Magma

References:

[1] Aouissi, S.; Mayer, DC; Ismaili, MC; Talbi, M.; Azizi, A., \(3\)-rank of ambiguous class groups of cubic Kummer extensions, Period. Math. Hung., 81, 250-274 (2020) · Zbl 1474.11186 · doi:10.1007/s10998-020-00326-1
[2] Aouissi, S.; Azizi, A.; Ismaili, MC; Mayer, DC; Talbi, M., Principal factors and lattice minima in cubic fields, Kyushu J. Math., 76, 101-118 (2022) · Zbl 1505.11140 · doi:10.2206/kyushujm.76.101
[3] Aouissi, S.; Talbi, M.; Mayer, DC; Ismaili, MC, \(3\)-Principalization over \(S_3\)-fields, Turk. J. Math., 45, 2225-2247 (2021) · Zbl 1497.11275 · doi:10.3906/mat-2103-58
[4] Aouissi, S.: Invariant class groups of Kummer extensions (in preparation)
[5] Barrucand, P.; Cohn, H., A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory, 2, 1, 7-21 (1970) · Zbl 0192.40001 · doi:10.1016/0022-314X(70)90003-X
[6] Barrucand, P.; Cohn, H., Remarks on principal factors in a relative cubic field, J. Number Theory, 3, 2, 226-239 (1971) · Zbl 0218.12002 · doi:10.1016/0022-314X(71)90040-0
[7] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[8] Bosma, W., Cannon, J.J., Fieker, C., Steels, A. (eds.): Handbook of Magma functions, Edition 2.28, Sydney (2023)
[9] Dedekind, R., Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math., 121, 40-123 (1900) · JFM 30.0198.02
[10] Gerth, F. III, Ranks of Sylow \(3\)-subgroups of ideal class groups of certain cubic fields, Bull. Am. Math. Soc., 79, 3, 521-525 (1973) · Zbl 0268.12001 · doi:10.1090/S0002-9904-1973-13183-0
[11] Gerth, F. III, On \(3\)-class groups of pure cubic fields, J. Reine Angew. Math., 278, 279, 52-62 (1975) · Zbl 0334.12011
[12] Gerth, F. III, On \(3\)-class groups of cyclic cubic extensions of certain number fields, J. Number Theory, 8, 1, 84-98 (1976) · Zbl 0329.12006 · doi:10.1016/0022-314X(76)90024-X
[13] Hasse, H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil Ia: Beweise zu Teil I, Jber. DMV, 36, 233-311 (1927) · JFM 53.0143.01
[14] Hasse, H., Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z., 31, 565-582 (1930) · JFM 56.0167.02 · doi:10.1007/BF01246435
[15] Herz, C.S.: Construction of class fields, Chapter VII. In: Borel, A., et al. (eds.) Seminar on Complex Multiplication (Inst. Advanced Study, Princeton, 1957-1958). Lecture Notes in Mathematics, vol. 21. Springer, New York (1966)
[16] Honda, T., Pure cubic fields whose class numbers are multiples of three, J. Number Theory, 3, 1, 7-12 (1971) · Zbl 0222.12004 · doi:10.1016/0022-314X(71)90045-X
[17] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, vol. 84. Springer, New York (1982) · Zbl 0482.10001
[18] Ismaili, M.C.: Sur la capitulation des \(3\)-classes d’idéaux de la clôture normale d’un corps cubique pur. Thèse de doctorat, Univ. Laval, Québec (1992)
[19] Ismaili, MC; El Mesaoudi, R., Sur la divisibilité exacte par \(3\) du nombre de classes de certains corps cubiques purs, Ann. Sci Math. Québec, 25, 2, 153-177 (2001) · Zbl 1015.11053
[20] Kobayashi, S., On the \(3\)-rank of the ideal class groups of certain pure cubic fields, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 20, 209-216 (1973) · Zbl 0271.12003
[21] Kobayashi, S., On the \(3\)-rank of the ideal class groups of certain pure cubic fields II, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 21, 263-270 (1974) · Zbl 0322.12011
[22] Kobayashi, S., On the \(\ell \)-class rank in some algebraic number fields, J. Math. Soc. Jpn., 26, 4, 668-676 (1974) · Zbl 0286.12004 · doi:10.2969/jmsj/02640668
[23] Kobayashi, S., Complete determination of the \(3\)-rank in pure cubic fields, J. Math. Soc. Jpn., 29, 2, 373-384 (1977) · Zbl 0348.12008 · doi:10.2969/jmsj/02920373
[24] Markoff, AA, Sur les nombres entiers dépendants d’une racine cubique d’un nombre entier ordinaire, Mém. Acad. Imp. Sci. St. Pétersbourg (Série VII), 38, 9, 1-37 (1892)
[25] Mayer, D.C.: Multiplicities of dihedral discriminants. Math. Comput. 58(198), 831-847, supplements section S55-S58 (1992) · Zbl 0737.11028
[26] Mayer, DC, Quadratic \(p\)-ring spaces for counting dihedral fields, Int. J. Number Theory, 10, 8, 2205-2242 (2014) · Zbl 1323.11090 · doi:10.1142/S1793042114500754
[27] Mayer, DC, Bicyclic commutator quotients with one non-elementary component, Math. Bohem., 148, 2, 149-180 (2023) · Zbl 07729570 · doi:10.21136/MB.2022.0127-21
[28] Mayer, D.C., Soullami, A.P: Algebraic number fields generated by an infinite family of monogenic trinomials. Bol. Soc. Mat. Mex. 29(1) (2023). doi:10.1007/s40590-022-00469-w · Zbl 1498.11215
[29] OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2023). Published electronically at https://oeis.org
[30] The Magma Group: Magma Computational Algebra System, Version 2.28-2, University of Sydney (2023). Available from http://magma.maths.usyd.edu.au
[31] The PARI Group: PARI/GP version 2.16.0, Université de Bordeaux (2023). Available from http://pari.math.u-bordeaux.fr
[32] Scholz, A., Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, 211-222 (1933) · Zbl 0007.00301 · doi:10.1007/BF01708865
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.