×

Quadratic \(p\)-ring spaces for counting dihedral fields. (English) Zbl 1323.11090

Let \(K\) be a quadratic number field of discriminant \(d\). For an odd prime \(p\) let \(m_p(d,c)\) denote the \(p\)-multiplicity of \(c\) with respect to \(d\), the number of degree \(p\) extensions of \(K\) with conductor \(c\) and absolute Galois group isomorphic to the dihedral group of order \(2p\). The author examines this quantity in detail, using an ideal-theoretic setup to unify several existing results and to solve new cases. Many interesting tables of data and concrete examples are given that illustrate the main ideas in detail. The author provides examples of interest in statistical algebraic number theory such as fields of small discriminant with given \(p\)-multiplicity. These tables correct some earlier errors that have appeared in the literature.
The author makes a convincing case that much of the difficult of computing \(m_p(d,c)\) is governed by the ‘\(p\)-defect’ \(\delta_p(c)\) with respect to \(K\). This \(p\)-defect is the codimension of the ‘\(p\)-ring space’ \(V_p(c)\) in the \(\mathbb{F}_p\)-vector space \(V_p\) of nontrivial \(p\)th powers of ideals. Previously formulas for the \(p\)-mulitplicity were known only for codimension \(0\) and \(1\), and here these are extended to codimension \(2\). In particular, the author builds on his earlier work [Math. Comput. 58, No. 198, 831–848 (1992; Zbl 0737.11028)]. These definitions are laid out clearly and a helpful picture illustrating the \(p\)-defect is given in Figure 1. Special care must be taken to deal with \(m_3(d,c)\) when \(c\) is an irregular conductor, where \(d \equiv -3 \mod 9\) and \(9\) divides \(c\), and the author nicely unifies this case with the more general setting.

MSC:

11R29 Class numbers, class groups, discriminants
11R20 Other abelian and metabelian extensions
11R16 Cubic and quartic extensions
11R11 Quadratic extensions
11Y40 Algebraic number theory computations

Citations:

Zbl 0737.11028

Online Encyclopedia of Integer Sequences:

Discriminants of real quadratic number fields with 3-class rank 2.

References:

[1] DOI: 10.1007/BF02952531 · JFM 53.0144.04 · doi:10.1007/BF02952531
[2] DOI: 10.1090/S0025-5718-97-00846-6 · Zbl 0882.11070 · doi:10.1090/S0025-5718-97-00846-6
[3] DOI: 10.5802/jtnb.433 · Zbl 1078.11071 · doi:10.5802/jtnb.433
[4] DOI: 10.1090/S0025-5718-04-01632-1 · Zbl 1051.11055 · doi:10.1090/S0025-5718-04-01632-1
[5] DOI: 10.1142/S1793042110003605 · Zbl 1225.11139 · doi:10.1142/S1793042110003605
[6] DOI: 10.1112/plms/s2-23.1.359 · doi:10.1112/plms/s2-23.1.359
[7] DOI: 10.1090/S0025-5718-1987-0866100-9 · doi:10.1090/S0025-5718-1987-0866100-9
[8] DOI: 10.1007/978-1-4419-8489-0 · Zbl 0977.11056 · doi:10.1007/978-1-4419-8489-0
[9] Fung G. W., Math. Comp. 55 pp 313– (1990)
[10] DOI: 10.1016/0022-314X(72)90011-X · Zbl 0229.12004 · doi:10.1016/0022-314X(72)90011-X
[11] DOI: 10.1007/BF01246435 · JFM 56.0167.02 · doi:10.1007/BF01246435
[12] Mayer D. C., Publ. Math. Debrecen 39 pp 19– (1991)
[13] Mayer D. C., Congr. Numer. 80 pp 73– (1991)
[14] Mayer D. C., Math. Comp. 58 pp 831– (1992)
[15] Mayer D. C., Kongress der ÖMG und DMV (2001)
[16] DOI: 10.1007/BF02940658 · Zbl 0007.10303 · doi:10.1007/BF02940658
[17] DOI: 10.1007/978-3-642-82465-4 · doi:10.1007/978-3-642-82465-4
[18] DOI: 10.1007/978-3-662-03983-0 · doi:10.1007/978-3-662-03983-0
[19] DOI: 10.1007/BF01708874 · Zbl 0008.10302 · doi:10.1007/BF01708874
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.