×

The stability of the controlled problem of fuzzy dynamic systems involving the random-order Caputo fractional derivative. (English) Zbl 1536.93681

Summary: This article discusses the stability theory of fuzzy fractional dynamic systems with the random-order Caputo fractional derivative (RO-FFDSs). We establish new inequalities on the random-order Caputo fractional derivative, which is an essential tool in investigating the stability theory of RO-FFDSs. Based on the extension of the Lyapunov direct method (LDM), we investigate the asymptotical stability (AS) and the Mittag-Leffler stability (MLS) of the controlled problem of RO-FFDSs via a linear feedback controller. Finally, numerical examples are given to show the effectiveness of the theoretical results.

MSC:

93D20 Asymptotic stability in control theory
93C42 Fuzzy control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19, 9, 2951-2957 (2014) · Zbl 1510.34111
[2] Allahviranloo, T.; Sahihi, H., Reproducing kernel method to solve fractional delay differential equations, Appl. Math. Comput., 400, Article 126095 pp. (2021) · Zbl 1508.34079
[3] Almeida, R.; Malinowska, A. B.; Monteiro, M. T.T., Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41, 1, 336-352 (2018) · Zbl 1384.34010
[4] An, T. V.; Phu, N. D.; Van Hoa, N., A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case, Fuzzy Sets Syst. (2021)
[5] Bede, B.; Stefanini, L., Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230, 119-141 (2013) · Zbl 1314.26037
[6] Cecconello, M. S.; Mizukoshi, M. T.; Lodwick, W., Interval nonlinear initial-valued problem using constraint intervals: theory and an application to the Sars-Cov-2 outbreak, Inf. Sci., 577, 871-882 (2021) · Zbl 1530.92212
[7] Chalco-Cano, Y.; Lodwick, W. A.; Bede, B., Single level constraint interval arithmetic, Fuzzy Sets Syst., 257, 146-168 (2014) · Zbl 1336.65077
[8] Dubois, D.; Prade, H., Gradual elements in a fuzzy set, Soft. Comput., 12, 2, 165-175 (2008) · Zbl 1133.03026
[9] Duarte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Linares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 22, 1-3, 650-659 (2015) · Zbl 1333.34007
[10] Duc, T. M.; Van Hoa, N., Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller, Chaos Solitons Fractals, 153, Article 111525 pp. (2021) · Zbl 1498.34022
[11] Dong, N. P.; Long, H. V.; Khastan, A., Optimal control of a fractional order model for granular SEIR epidemic with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 88, Article 105312 pp. (2020) · Zbl 1454.34072
[12] Dong, N. P.; Son, N. T.K.; Allahviranloo, T.; Tam, H. T.T., Finite-time stability of mild solution to time-delay fuzzy fractional differential systems under granular computing, Granular Comput., 1-17 (2022)
[13] Elias, L. J.; Faria, F. A.; Araujo, R.; Oliveira, V. A., Stability analysis of Takagi-Sugeno systems using a switched fuzzy Lyapunov function, Inf. Sci., 543, 43-57 (2021) · Zbl 1478.93344
[14] Esmi, E.; Santo Pedro, F.; de Barros, L. C.; Lodwick, W., Fréchet derivative for linearly correlated fuzzy function, Inf. Sci., 435, 150-160 (2018) · Zbl 1462.46077
[15] Feng, Z.; Zhang, H.; Li, R. B., State and static output feedback control of singular Takagi-Sugeno fuzzy systems with time-varying delay via proportional plus derivative feedback, Inf. Sci., 608, 1334-1351 (2022) · Zbl 1533.93203
[16] Fortin, J.; Dubois, D.; Fargier, H., Gradual numbers and their application to fuzzy interval analysis, IEEE Trans. Fuzzy Syst., 16, 2, 388-402 (2008)
[17] Hoa, N. V.; Lupulescu, V.; O’Regan, D., A note on initial value problems for fractional fuzzy differential equations, Fuzzy Sets Syst., 347, 54-69 (2018) · Zbl 1397.34013
[18] Jiang, J.; Chen, H.; Guirao, J. L.; Cao, D., Existence of the solution and stability for a class of variable fractional order differential systems, Chaos Solitons Fractals, 128, 269-274 (2019) · Zbl 1483.34014
[19] Keshavarz, M.; Allahviranloo, T., Fuzzy fractional diffusion processes and drug release, Fuzzy Sets Syst., 436, 82-101 (2022) · Zbl 1522.35559
[20] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 5, 1810-1821 (2010) · Zbl 1189.34015
[21] Li, Y.; Jiang, Y.; Sun, J.; Sun, C.; Liu, Y.; Wang, H., Adaptive finite-time direct fuzzy control for a nonlinear system with an unknown control gain based on an observer, Inf. Sci., 607, 92-108 (2022) · Zbl 1536.93442
[22] Liu, S.; Jiang, W.; Li, X.; Zhou, X. F., Lyapunov stability analysis of fractional nonlinear systems, Appl. Math. Lett., 51, 13-19 (2016) · Zbl 1356.34061
[23] Lodwick, W. A., Constrained interval arithmetic (1999), University of Colorado at Denver, Center for Computational Mathematics: University of Colorado at Denver, Center for Computational Mathematics Denver
[24] Lodwick, W. A.; Untiedt, E. A., A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers, (NAFIPS 2008-2008 Annual Meeting of the North American Fuzzy Information Processing Society (2008), IEEE), 1-6
[25] Long, H. V.; Son, N. T.K.; Tam, H. T.T., The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets Syst., 309, 35-63 (2017) · Zbl 1386.35466
[26] Long, H. V.; Son, N. T.K.; Hoa, N. V., Fuzzy fractional partial differential equations in partially ordered metric spaces, Iran. J. Fuzzy Syst., 14, 2, 107-126 (2017) · Zbl 1367.35195
[27] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 1, 57-98 (2002) · Zbl 1018.93007
[28] Lupulescu, V., Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265, 63-85 (2015) · Zbl 1361.26001
[29] Lu, G.; Ho, D. W., Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation, IEEE Trans. Autom. Control, 51, 5, 818-823 (2006) · Zbl 1366.34015
[30] Matignon, D., Stability results for fractional differential equations with applications to control processing, Computational engineering in systems applications, 2, 1, 963-968 (1996)
[31] Mazandarani, M.; Pariz, N.; Kamyad, A. V., Granular differentiability of fuzzy-number-valued functions, IEEE Trans. Fuzzy Syst., 26, 1, 310-323 (2017)
[32] Mazandarani, M.; Xiu, L., A review on fuzzy differential equations, IEEE Access, 9, 62195-62211 (2021)
[33] Mazandarani, M.; Naser, P., Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept, ISA Trans., 76, 1-17 (2018)
[34] Najafi, N.; Allahviranloo, T.; Pedrycz, W., Solving fractional fuzzy impulsive differential equations with uncertainty by novel computational technique, New Math. Natural Comput., 18, 251-291 (2021)
[35] Najariyan, M.; Zhao, Y., On the stability of fuzzy linear dynamical systems, J. Franklin Inst., 357, 9, 5502-5522 (2020) · Zbl 1441.93229
[36] Najariyan, M.; Zhao, Y., Granular fuzzy PID controller, Expert Syst. Appl., 167, Article 114182 pp. (2021)
[37] Noeiaghdam, Z.; Allahviranloo, T.; Nieto, J. J., q-Fractional differential equations with uncertainty, Soft. Comput., 23, 19, 9507-9524 (2019) · Zbl 1430.34009
[38] Sun, H.; Chen, Y.; Chen, W., Random-order fractional differential equation models, Signal Process., 91, 3, 525-530 (2011) · Zbl 1203.94056
[39] Son, N. T.K.; Dong, N. P.; Khastan, A.; Long, H. V., Complete controllability for a class of fractional evolution equations with uncertainty, Evolution Equations Control Theory (2020)
[40] Son, N. T.K.; Thao, H. T.P.; Dong, N. P.; Long, H. V., Fractional calculus of linear correlated fuzzy-valued functions related to Fréchet differentiability, Fuzzy Sets Syst., 419, 35-66 (2021) · Zbl 1522.26030
[41] Sousa, J.; Machado, J. A.; de Oliveira, E. C., The \(\psi \)-Hilfer fractional calculus of variable order and its applications, Comput. Appl. Math., 39, 4, 1-35 (2020) · Zbl 1476.26004
[42] Su, X.; Chen, C. P.; Liu, Z., Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults, Inf. Sci., 581, 553-566 (2021) · Zbl 07791395
[43] Tavares, D.; Almeida, R.; Torres, D. F., Caputo derivatives of fractional variable order: numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35, 69-87 (2016) · Zbl 1538.65275
[44] Vu, H.; Hoa, N. V., Uncertain fractional differential equations on a time scale under granular differentiability concept, Comput. Appl. Math., 38, 3, 1-22 (2019) · Zbl 1463.34026
[45] Wu, G. C.; Deng, Z. G.; Baleanu, D.; Zeng, D. Q., New variable-order fractional chaotic systems for fast image encryption, Chaos, 29, 8, Article 083103 pp. (2019) · Zbl 1420.34028
[46] Wu, G. C.; Luo, M.; Huang, L. L.; Banerjee, S., Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100, 4, 3611-3623 (2020) · Zbl 1516.34022
[47] Yang, X.; Li, C.; Huang, T.; Song, Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293, 416-422 (2017) · Zbl 1411.34023
[48] Younus, A.; Asif, M.; Farhad, K., Interval-valued fractional q-calculus and applications, Inf. Sci., 569, 241-263 (2021) · Zbl 1529.26010
[49] Zhan, T.; Ma, S.; Li, W.; Pedrycz, W., Exponential stability of fractional-order switched systems with mode-dependent impulses and its application, IEEE Trans. Cybern. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.