×

Lagrangian Voronoï meshes and particle dynamics with shocks. (English) Zbl 1536.76083

Summary: We present a new first order particle method on lagrangian and moving Voronoï meshes for the numerical simulation of compressible flows with shocks and internal interfaces between different gas. The method is based on the closed form formula of the partial derivative of the volume of Voronoï cells with respect to the generators. The mathematical proof of the formula seems original with respect to the literature. A corollary is that the volume of Voronoï cells is generically of class \(C^1\) with respect to the generators. The final scheme is conservative in local mass, total momentum and total energy, and it is endowed with an entropy inequality which insures the correctness of shocks calculations. Numerical illustrations in dimension \(d = 2\) are displayed for basic problems on coarse meshes. The implementation developed to obtain the numerical illustrations uses a freely available library for the generation of the Voronoï cells at all time steps.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
51M20 Polyhedra and polytopes; regular figures, division of spaces

Software:

ReALE; HE-E1GODF
Full Text: DOI

References:

[1] Hermeline, F., Triangulation automatique d��un polyèdre en dimension \(N\). RAIRO. Analyse numérique. Tome, 3, 211-242 (1982), http://www.numdam.org/item/M2AN_1982__16_3_211_0/ · Zbl 0567.65083
[2] Boissonat, J. D.; Yvinec, M., Algorithmic Geometry (1998), Cambridge University Press · Zbl 0917.68212
[3] Guibas, G.; Mitchell, L.; Thomasroos, J., Voronoi diagrams of moving points. Internat. J. Comput. Geom. Appl. (2011)
[4] Devillers, O.; Golin, M.; Kedem, K.; Schirra, S., Queries on voronoi diagrams of moving points. Comput. Geometr., 5, 315-327 (1996) · Zbl 0857.68104
[5] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. (2009)
[6] Gaburro, E.; Boscheri, W.; Chiocchetti, S.; Klingenberg, C.; Springel, V.; Dumbser, M., High order direct arbitrary-Lagrangian-Eulerian schemes on moving voronoi meshes with topology changes. J. Comput. Phys. (2020) · Zbl 07504692
[7] Monaghan, J. J., An introduction to SPH. Comput. Phys. Comm., 1, 89-96 (1988) · Zbl 0673.76089
[8] Vila, J. P., On particle weighted methods and smooth particle hydrodynamics. Math. Model. Methods Appl. Sci., 02, 161-209 (1999) · Zbl 0938.76090
[9] Meng, Zi-Fei; Zhang, A-Man; Wang, Ping-Ping; Ming, Fu-Ren, A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1507.76089
[10] Cottet, G. H., Multi-physics and particle methods, 1296-1298
[11] Campos Pinto, M.; Jund, S.; Salmon, S.; Sonnendrücker, E., Charge-conserving FEMPIC schemes on general grids. Comptes Rendus Mécanique, 570-582 (2014)
[12] Addessio, F. L.; Baumgardner, J. R.; Dukowicz, J. K.; Johnson, N. L.; Kashiwa, B. A.; Rauenzahn, R. M.; Zemach, C., CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal SlipTechnical Report (1992), https://www.osti.gov/biblio/10143914
[13] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys., 1, 227-262 (1998) · Zbl 0931.76080
[14] Després, B.; Mazeran, C., Lagrangian gas dynamics in 2D and Lagrangian systems arch. Ration. Mech. Anal., 327-372 (2005) · Zbl 1096.76046
[15] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys., 5160-5183 (2009) · Zbl 1168.76029
[16] Maire, P. H., A high-order cell centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys., 7, 2391-2425 (2009) · Zbl 1156.76434
[17] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for 2D compressible flow problems. SIAM J. Sci. Comput. (2007)
[18] Loubere, R.; Maire, P. H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method. J. Comput. Phys., 12, 4724-4761 (2010) · Zbl 1305.76067
[19] Ciallella, Mirco; Ricchiuto, Mario; Paciorri, Renato; Bonfiglioli, Aldo, Extrapolated discontinuity tracking for complex 2D shock interactions. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.76132
[20] Asai, Mitsuteru; Fujioka, Shujiro; Saeki, Yusuke; Morikawa, Daniel S.; Tsuji, Kumpei, A class of second-derivatives in the smoothed particle hydrodynamics with 2nd-order accuracy and its application to incompressible flow simulations. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 1539.76148
[21] Shashkov, M. Y.; Solovjov, A. V., Numerical Simulation of Two-Dimensional Flows By the Free-Lagrangian Method (1991), Technische Universität Munchen Report TUM-M9105
[22] Boltcheva, D.; Lévy, B., Surface reconstruction by computing restricted Voronoi cells in parallel. Comput. Aided Des. (2017)
[23] Lévy, B.; Liu, Y., \( L_p\) Centroidal Voronoi tesellation and applications. ACM Trans. Graph. (2010)
[24] Flekkoy, E. G.; Coveney, P. V., From molecular dynamics to dissipative particle dynamics. Phys. Rev. Lett., 9, 1775 (1999)
[25] Serrano, M.; Espanol, P., Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E (2000)
[26] Duque, D., A unified derivation of Voronoi, power, and finite-element Lagrangian computational fluid dynamics. Eur. J. Mech. B/Fluids, 268-278 (2023) · Zbl 1507.76098
[27] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Springer: Springer New York, NY · Zbl 1063.65080
[28] Dafermos, C., Hyperbolic Conservation Laws in Continuum Physics (2016), Springer, Grundlehren der mathematisch · Zbl 1364.35003
[29] Després, B., Numerical Methods for Eulerian and Lagrangian Conservation Laws (2017), Birkhäuser · Zbl 1379.65069
[30] Godunov, S. K.; Zabrodin, A. V.; Ya. Ivanov, M.; Kraiko, A. N.; Prokopov, G. P., Numerical Solving Many-Dimensional Problems of Gas Dynamics (1976), Nauka
[31] Després, B.; Labourasse, E., Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy. J. Comput. Phys., 20 (2012) · Zbl 1284.76287
[32] Després, B., Weak consistency of the cell-centered lagrangian GLACE scheme on general meshes in any dimension. Comput. Methods Appl. Mech. Engrg., 41-44, 2669-2679 (2010) · Zbl 1231.76177
[33] Scipy-Voronoi, https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.html
[34] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics - a Practical Introduction (1999), Springer · Zbl 0923.76004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.