×

Extrapolated discontinuity tracking for complex 2D shock interactions. (English) Zbl 1507.76132

Summary: A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors [J. Comput. Phys. 412, Article ID 109440, 24 p. (2020; Zbl 1436.76016)]. The method combines the unstructured shock-fitting [R. Paciorri and A. Bonfiglioli, in: Shock waves. 26th international symposium on shock waves. Vol. 2. Selected papers based on the presentations at the symposium, Göttingen, Germany, July 15–20, 2007. Berlin: Springer. 1035–1040 (2009; Zbl 1169.76415)] approach, developed in the last decade by some of the authors, with ideas coming from embedded boundary methods. In particular, second-order extrapolations based on Taylor series expansions are employed to transfer the solution and retain high order of accuracy. This paper describes the basic idea behind the new method and further algorithmic improvements which make the extrapolated Discontinuity Tracking Technique (eDIT) capable of dealing with complex shock-topologies featuring shock-shock and shock-wall interactions occurring in steady problems. This method paves the way to a new class of shock-tracking techniques truly independent on the mesh structure and flow solver. Various test-cases are included to prove the potential of the method, demonstrate the key features of the methodology, and thoroughly evaluate several technical aspects related to the extrapolation from/onto the shock, and their impact on accuracy, and conservation.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76L05 Shock waves and blast waves in fluid mechanics

Software:

Gmsh

References:

[1] VonNeumann, J.; Richtmyer, R. D., A Method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl. Phys., 21, 3, 232-237 (1950) · Zbl 0037.12002
[2] Lax, P. D., Hyperbolic Systems Of Conservation Laws And The Mathematical Theory Of Shock Waves (1973), SIAM · Zbl 0268.35062
[3] Emmons, H. W., The Numerical Solution of Compressible Fluid Flow ProblemsNACA-TN 932, 53 (1944), NASA, URL https://apps.dtic.mil/dtic/tr/fulltext/u2/b814416.pdf · Zbl 0063.01246
[4] H.W. Emmons, Flow of a Compressible Fluid Past a Symmetrical Airfoil in a Wind Tunnel and in Free Air, NACA-TN 1746, 1948, URL.
[5] Marsilio, R.; Moretti, G., Shock-fitting method for two-dimensional inviscid, steady supersonic flows in ducts, Meccanica, 24, 4, 216-222 (1989)
[6] Moretti, G., Thirty-six years of shock fitting, Comput. & Fluids, 31, 4-7, 719-723 (2002) · Zbl 1075.76501
[7] Paciorri, R.; Bonfiglioli, A., A shock-fitting technique for 2D unstructured grids, Comput. & Fluids, 38, 3, 715-726 (2009) · Zbl 1169.76415
[8] Paciorri, R.; Bonfiglioli, A., Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique, J. Comput. Phys., 230, 8, 3155-3177 (2011) · Zbl 1316.76080
[9] Bonfiglioli, A.; Paciorri, R.; Campoli, L., Unsteady shock-fitting for unstructured grids, Int. J. Numer. Methods Fluids, 81, 4, 245-261 (2016)
[10] Campoli, L.; Quemar, P.; Bonfiglioli, A.; Ricchiuto, M., Shock-fitting and predictor-corrector explicit ALE Residual Distribution, (Shock Fitting (2017), Springer), 113-129
[11] Bonfiglioli, A.; Grottadaurea, M.; Paciorri, R.; Sabetta, F., An unstructured, three-dimensional, shock-fitting solver for hypersonic flows, Comput. & Fluids, 73, 162-174 (2013) · Zbl 1365.76215
[12] Ivanov, M. S.; Bonfiglioli, A.; Paciorri, R.; Sabetta, F., Computation of weak steady shock reflections by means of an unstructured shock-fitting solver, Shock Waves, 20, 4, 271-284 (2010) · Zbl 1267.76084
[13] Campoli, L.; Assonitis, A.; Ciallella, M.; Paciorri, R.; Bonfiglioli, A.; Ricchiuto, M., UnDiFi-2D: an Unstructured Discontinuity Fitting code for 2D grids, Comput. Phys. Commun., 271, 108202 (2022)
[14] Zou, D.; Xu, C.; Dong, H.; Liu, J., A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes, J. Comput. Phys., 345, 866-882 (2017) · Zbl 1378.76062
[15] Corrigan, A.; Kercher, A. D.; Kessler, D. A., A moving discontinuous Galerkin finite element method for flows with interfaces, Int. J. Numer. Methods Fluids, 89, 9, 362-406 (2019)
[16] Zahr, M. J.; Shi, A.; Persson, P. O., Implicit shock tracking using an optimization-based high-order discontinuous Galerkin method, J. Comput. Phys., 410, Article 109385 pp. (2020) · Zbl 1436.76035
[17] Zou, D.; Bonfiglioli, A.; Paciorri, R.; Liu, J., An embedded shock-fitting technique on unstructured dynamic grids, Comput. & Fluids, 218, Article 104847 pp. (2021) · Zbl 1521.76499
[18] Chang, S.; Bai, X.; Zou, D.; Chen, Z.; Liu, J., An adaptive discontinuity fitting technique on unstructured dynamic grids, Shock Waves, 1-13 (2019)
[19] Chen, X.; Fu, S., Convergence acceleration for high-order shock-fitting methods in hypersonic flow applications with efficient implicit time-stepping schemes, Comput. & Fluids, 210, Article 104668 pp. (2020) · Zbl 1521.76533
[20] Huang, T.; Zahr, M. J., A robust, high-order implicit shock tracking method for simulation of complex, high-speed flows (2021), arXiv preprint arXiv:2105.00139
[21] Luke, M.; Helenbrook, B. T.; Mazaheri, A., A novel stabilization method for high-order shock fitting with finite element methods, J. Comput. Phys., 430, Article 110096 pp. (2021) · Zbl 07506527
[22] Zahr, M. J.; Powers, J. M., High-order resolution of multidimensional compressible reactive flow using implicit shock tracking, AIAA J., 59, 1, 150-164 (2021)
[23] Ciallella, M.; Ricchiuto, M.; Paciorri, R.; Bonfiglioli, A., Extrapolated Shock Tracking: bridging shock-fitting and embedded boundary methods, J. Comput. Phys., Article 109440 pp. (2020) · Zbl 1436.76016
[24] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[25] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 8-11, 491-501 (2003)
[26] Abgrall, R.; Beaugendre, H.; Dobrzynski, C., An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques, J. Comput. Phys., 257, 83-101 (2014) · Zbl 1349.76580
[27] Nouveau, L.; Beaugendre, H.; Dobrzynski, C.; Abgrall, R.; Ricchiuto, M., An adaptive, residual based, splitting approach for the penalized Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 303, 208-230 (2016) · Zbl 1423.76267
[28] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[29] Burman, E., Ghost penalty, C. R. Math., 348, 21-22, 1217-1220 (2010) · Zbl 1204.65142
[30] Burman, E.; Hansbo, P., Fictitious domain methods using cut elements: iii. A stabilized Nitsche method for Stokes’ problem, ESAIM Math. Model. Numer. Anal., 48, 3, 859-874 (2014) · Zbl 1416.65437
[31] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[32] Farhat, C.; Rallu, A.; Shankaran, S., A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J. Comput. Phys., 227, 16, 7674-7700 (2008) · Zbl 1269.76073
[33] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems, J. Comput. Phys., 372, 972-995 (2018) · Zbl 1415.76457
[34] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part II: Linear advection-diffusion and incompressible Navier-Stokes equations, J. Comput. Phys., 372, 996-1026 (2018) · Zbl 1415.76458
[35] She, D.; Kaufman, R.; Lim, H.; Melvin, J.; Hsu, A.; Glimm, J., Front-tracking methods, (Handbook Of Numerical Analysis, vol. 17 (2016), Elsevier), 383-402
[36] Pepe, R.; Bonfiglioli, A.; D’Angola, A.; Colonna, G.; Paciorri, R., An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium, Comput. Phys. Comm., 196, 179-193 (2015)
[37] Song, T.; Main, A.; Scovazzi, G.; Ricchiuto, M., The shifted boundary method for hyperbolic systems: Embedded domain computations of linear waves and shallow water flows, J. Comput. Phys., 369, 45-79 (2018) · Zbl 1392.76010
[38] A. Assonitis, M. Ciallella, R. Paciorri, M. Ricchiuto, A. Bonfiglioli, A new shock-fitting technique for 2-D structured grids, in: AIAA Scitech 2022 Forum, 2022, p. 2008, http://dx.doi.org/10.2514/6.2022-2008.
[39] Salas, M. D., A Shock-Fitting Primer (2009), CRC Press
[40] Assonitis, A.; Paciorri, R.; Bonfiglioli, A., Numerical simulation of shock/boundary-layer interaction using an unstructured shock-fitting technique, Comput. & Fluids, Article 105058 pp. (2021) · Zbl 1521.76299
[41] Paciorri, R.; Bonfiglioli, A., Accurate detection of shock waves and shock interactions in two-dimensional shock-capturing solutionis, J. Comput. Phys., 406, Article 109196 pp. (2020)
[42] Beck, A.; Zeifang, J.; Schwarz, A.; Flad, D., A Neural Network based Shock Detection and Localization Approach for Discontinuous Galerkin Method, J. Comput. Phys., 423, Article 109824 pp. (2020) · Zbl 07508429
[43] Bonfiglioli, A., Fluctuation splitting schemes for the compressible and incompressible Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 14, 1, 21-39 (2000) · Zbl 0971.76051
[44] Deconinck, H.; Ricchiuto, M., Residual Distribution Schemes: Foundations and Analysis, (Encyclopedia Of Computational Mechanics Second Edition (2017), John Wiley & Sons, Ltd), 1-53
[45] Abgrall, R.; Ricchiuto, M., High-Order Methods for CFD, (Encyclopedia Of Computational Mechanics Second Edition (2017), John Wiley & Sons, Ltd), 1-54
[46] Bonfiglioli, A.; Paciorri, R., A mass-matrix formulation of unsteady fluctuation splitting schemes consistent with Roe’s parameter vector, Int. J. Numer. Methods Fluids, 27, 4-5, 210-227 (2013) · Zbl 07510440
[47] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[48] Deconinck, H.; Roe, P.; Struijs, R., A multidimensional generalization of Roe’s difference splitter for the Euler equations, Comput. Fluids, 22, 2/3, 215-222 (1993) · Zbl 0790.76054
[49] Giorgiani, G.; Guillard, H.; Nkonga, B.; Serre, E., A stabilized Powell-Sabin finite-element method for the 2D Euler equations in supersonic regime, Comput. Methods Appl. Mech. Eng., 216-235 (2018) · Zbl 1440.76065
[50] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Eng., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[51] Abgrall, R., How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach, J. Comput. Phys., 125, 1, 150-160 (1996), URL https://www.sciencedirect.com/science/article/pii/S0021999196900856 · Zbl 0847.76060
[52] Csík, A.; Ricchiuto, M.; Deconinck, H., A Conservative Formulation of the Multidimensional Upwind Residual Distribution Schemes for General Nonlinear Conservation Laws, J. Comput. Phys., 179, 2, 286-312 (2002) · Zbl 1005.65111
[53] Abgrall, R.; Bacigaluppi, P.; Tokareva, S., A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Comput. & Fluids, 169, 10-22 (2018), URL https://www.sciencedirect.com/science/article/pii/S0045793017302906, Recent progress in nonlinear numerical methods for time-dependent flow & transport problems · Zbl 1410.76277
[54] Abgrall, R.; Ricchiuto, M., Hyperbolic balance laws: residual distribution, local and global fluxes, (Current Trends In Fluid Dynamics: Modelling And Simulation (2022), Springer), in press, https://arxiv.org/pdf/2109.08491[pdf]
[55] Bonfiglioli, A.; Paciorri, R., Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids, AIAA J., 52, 7, 1404-1416 (2014)
[56] Campobasso, M. S.; Baba-Ahmadi, M. H., Ad-Hoc Boundary Conditions for CFD Analyses of Turbomachinery Problems With Strong Flow Gradients at Farfield Boundaries, J. Turbomach., 133, 4, 041010-041010-9 (2011)
[57] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[58] Müller, J. D.; Roe, P. L.; Deconinck, H., A frontal approach for internal node generation in Delaunay triangulations, Int. J. Numer. Methods Fluids, 17, 3, 241-255 (1993) · Zbl 0780.76064
[59] J.D. Müller, DELAUNDO mesh generator, Available at http://www.ae.metu.edu.tr/tuncer/ae546/prj/delaundo/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.