×

Finite element and isogeometric stabilized methods for the advection-diffusion-reaction equation. (English) Zbl 1536.76069

Summary: We develop two new stabilized methods for the steady advection-diffusion-reaction equation, referred to as the Streamline GSC Method and the Directional GSC Method. Both are globally conservative and perform well in numerical studies utilizing linear, quadratic, cubic, and quartic Lagrange finite elements and maximally smooth B-spline elements. For the streamline GSC method we can prove coercivity, convergence, and optimal-order error estimates in a strong norm that are robust in the advective and reactive limits. The directional GSC method is designed to accurately resolve boundary layers for flows that impinge upon the boundary at an angle, a long-standing problem. The directional GSC method performs better than the streamline GSC method in the numerical studies, but it is not coercive. We conjecture it is inf-sup stable but we are unable to prove it at this time. However, calculations of the inf-sup constant support the conjecture. In the numerical studies, B-spline finite elements consistently perform better than Lagrange finite elements of the same order and number of unknowns.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

Nutils

References:

[1] Harari, Isaac; Hughes, Thomas J. R., Stabilized finite element methods for steady advection-diffusion with production. Comput. Methods Appl. Mech. Eng., 165-191 (1994)
[2] Asensio, Maria I.; Russo, Alessandro; Sangalli, Giancarlo, The residual-free bubble numerical method with quadratic elements. Math. Models Methods Appl. Sci., 5, 641-661 (2004) · Zbl 1077.65118
[3] Brezzi, Franco; Marini, Donatella, Augmented spaces, two-level methods, and stabilizing subgrids. Int. J. Numer. Methods Fluids, 1-2, 31-46 (2002) · Zbl 1021.76024
[4] Brezzi, Franco; Franca, Leopoldo P.; Hughes, Thomas J. R.; Russo, Alessandro, \( b = \int g\). Comput. Methods Appl. Mech. Eng., 329-339 (1997) · Zbl 0904.76041
[5] Brezzi, Franco; Hauke, Guillermo; Marini, Donatella; Sangalli, Giancarlo, Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. Math. Models Methods Appl. Sci., 3, 445-461 (2003) · Zbl 1098.65104
[6] Brezzi, Franco; Marini, Donatella; Russo, Alessandro, On the choice of a stabilizing subgrid for convection-diffusion problems. Comput. Methods Appl. Mech. Eng., 127-148 (2005) · Zbl 1143.65390
[7] Codina, Ramon, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng., 185-210 (1998) · Zbl 0959.76040
[8] Franca, Leopoldo P.; Do Carmo, Eduardo G. D., The Galerkin gradient least-squares method. Comput. Methods Appl. Mech. Eng., 41-54 (1989) · Zbl 0699.65077
[9] Franca, Leopoldo P.; Farhat, Charbel, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng., 299-308 (1995) · Zbl 1067.76567
[10] Franca, Leopoldo P.; Valentin, Frederic, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Eng., 1785-1800 (2000) · Zbl 0976.76038
[11] Hauke, Guillermo, A simple stabilized method for the advection-diffusion-reaction equation. Comput. Methods Appl. Mech. Eng., 27-28, 2925-2947 (2002) · Zbl 1005.76057
[12] Hauke, Guillermo; Doweidar, Mohamed H., Exploring new subgrid scale stabilized methods for advection-diffusion-reaction · Zbl 1139.35358
[13] Hauke, Guillermo; García-Olivares, Antoni, Variational subgrid scale formulations for the advection-diffusion-reaction equation. Comput. Methods Appl. Mech. Eng., 51-52, 6847-6865 (2001), Erratum 191(27-28):3123-3124, 2002, 10.1016/S0045-7825(02)00233-5 · Zbl 0996.76074
[14] Idelsohn, Sergio R.; Nigro, Norberto M.; Storti, Mario A.; Buscaglia, Gustavo C., A Petrov-Galerkin formulation for advection-reaction-diffusion problems. Comput. Methods Appl. Mech. Eng., 27-46 (1996) · Zbl 0896.76042
[15] Oñate, Eugenio; Miquel, Juan; Hauke, Guillermo, Stabilized formulation for the advection-diffusion-absorption equation using finite calculus and linear finite elements. Comput. Methods Appl. Mech. Eng., 3926-3946 (2006) · Zbl 1178.76234
[16] Tezduyar, Tayfun; Park, Youngjin, Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reactions. Comput. Methods Appl. Mech. Eng., 307-325 (1986) · Zbl 0593.76096
[17] Valentin, Frederic; Franca, Leopoldo P., Combining stabilized finite element methods (1995), URL http://ccm.ucdenver.edu/reports/rep048.pdf · Zbl 1005.65128
[18] Hauke, Guillermo; Sangalli, Giancarlo; Doweidar, Mohamed H., Combining adjoint stabilized methods for the advection-diffusion-reaction problem. Math. Models Methods Appl. Sci., 2, 305-326 (2007) · Zbl 1139.35358
[19] Hughes, Thomas J. R.; Sangalli, Giancarlo, Variational multiscale analysis: the fine-scale green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal., 539-557 (2007) · Zbl 1152.65111
[20] Brooks, Alexander N.; Hughes, Thomas J. R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 199-259 (1982) · Zbl 0497.76041
[21] van Zwieten, Joost S. B.; van Zwieten, Gertjan J.; Hoitinga, Wijnand, Nutils 7.0 (2022)
[22] Bathe, Klaus-Jürgen; Hendriana, Dena; Brezzi, Franco; Sangalli, Giancarlo, Inf-sup testing of upwind methods. Int. J. Numer. Methods Eng., 745-760 (2000) · Zbl 0963.76044
[23] Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr, Finite element methods respecting the discrete maximum principle for convection-diffusion equations (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.