×

Asymptotic behavior of minimizing \(p\)-harmonic maps when \(p \nearrow 2\) in dimension 2. (English) Zbl 1536.58009

The objective of this article is to construct, from a bounded Lipschitz planar domain \(\Omega\) in \(\mathbb{R}^2\) into a Riemannian manifold \(N\), minimising \(2\)-harmonic maps in \(W^{1,2}(\Omega, N)\) with boundary condition \(g\in W^{1/2 , 2}(\partial \Omega, N)\), as the limit, when \(p\nearrow 2\), of minimising \(p\)-harmonic maps (\(p\in (1,2)\)) from \(\Omega\) to \(N\), with the same boundary values.
The direct method of Calculus of Variations will provide a minimiser of the Dirichlet energy unless the space of \(W^{1,2}\)-maps with boundary values \(g\) is empty, which is known to happen.
In particular, the authors prove that the \(p\)-energy of minimising \(p\)-harmonic maps with fixed boundary condition in \(W^{1/2 , 2}(\partial \Omega, N)\) converges, when \(p\nearrow 2\), to the singular energy \({\mathcal{E}}^{1,2}_{\mathrm{sg}}(g)\), which quantifies the free homotopy class of \(g\).
This leads to the convergence of a sub-sequence of minimising \(p_n\)-harmonic maps, still with boundary condition \(g\in W^{1/2 , 2}(\partial \Omega, N)\), to a renormalisable \(2\)-harmonic map, minimising the \(2\)-energy on \(\Omega\) minus a finite number of points and minimising, on the whole of \(\Omega\), the renormalised energy \[ {\mathcal{E}}^{1,2}_{\mathrm{ren}}(v) = \lim_{\rho \searrow 0} \int_{\Omega\setminus \cup_{i=1}^{k} {\mathbb B}^2(a_i,\rho)} \frac{|Dv|^2}{2} - {\mathcal{E}}^{1,2}_{\mathrm{sg}}(g)\log{\frac{1}{\rho}} \]
Instead of relying on the regularity of \(p\)-harmonic maps, which is always a tricky question, the method used is an adaptation of approaches employed for Ginzburg-Landau energies and \({\mathcal{E}}^{1,2}_{\mathrm{ren}}\) can be seen as a relaxation functional.

MSC:

58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps

References:

[1] Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, volume 17 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, second edition (2014) · Zbl 1311.49001
[2] Beaufort, P.-A., Lambrechts, J., Henrotte, F., Geuzaine, C., Remacle, J.-F.: Computing cross fields: a PDE approach based on the Ginzburg-Landau theory. In: Procedia Engineering, 203:219-231, 2017. 26th International Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain
[3] Berger, M.: Systoles et applications selon Gromov. Number 216, pages Exp. No. 771, 5, 279-310. 1993. Séminaire Bourbaki, Vol. 1992/93 · Zbl 0789.53040
[4] Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 3-4, 153-206 (1991) · Zbl 0756.46017 · doi:10.1007/BF02392449
[5] Bethuel, F.; Brezis, H.; Hélein, F., Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications (1994), Boston: Birkhäuser Boston Inc, Boston · Zbl 0802.35142
[6] Bethuel, F.; Demengel, F., Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., 3, 4, 475-491 (1995) · Zbl 0846.46021 · doi:10.1007/BF01187897
[7] Bousquet, P.; Ponce, AC; Van Schaftingen, J., Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc. (JEMS), 17, 4, 763-817 (2015) · Zbl 1318.58006 · doi:10.4171/JEMS/518
[8] Bousquet, P.; Ponce, AC; Van Schaftingen, J., Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl.(4), 196, 6, 2261-2301 (2017) · Zbl 1380.58007 · doi:10.1007/s10231-017-0664-1
[9] Brezis, H.; Coron, J-M; Lieb, EH, Harmonic maps with defects, Commun. Math. Phys., 107, 4, 649-705 (1986) · Zbl 0608.58016 · doi:10.1007/BF01205490
[10] Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1(2), 197-263 (1995) · Zbl 0852.58010
[11] Brezis, H., Nirenberg, L.: Degree theory and BMO. II. Compact manifolds with boundaries. Selecta Math. (N.S.) 2(3), 309-368 (1996). With an appendix by the authors and Petru Mironescu · Zbl 0868.58017
[12] Canevari, G.; Orlandi, G., Topological singular set of vector-valued maps, II: \( \Gamma \)-convergence for Ginzburg-Landau type functionals, Arch. Ration. Mech. Anal., 241, 2, 1065-1135 (2021) · Zbl 1467.58004 · doi:10.1007/s00205-021-01671-2
[13] Castillo, RE; Rafeiro, H., An introductory course in Lebesgue spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2016), Cham: Springer, Cham · Zbl 1352.46003
[14] Clarkson, JA, Uniformly convex spaces, Trans. Am. Math. Soc., 40, 3, 396-414 (1936) · JFM 62.0460.04 · doi:10.1090/S0002-9947-1936-1501880-4
[15] Convent, A.; Van Schaftingen, J., Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16, 1, 97-128 (2016) · Zbl 1343.58005
[16] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili, Rend. Sem. Mat. Univ. Padova, 27, 284-305 (1957) · Zbl 0087.10902
[17] Giaquinta, M., Mucci, D.: Maps into manifolds and currents: area and \(W^{1,2}-, W^{1/2}\)-, BV-energies. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 3. Edizioni della Normale, Pisa (2006) · Zbl 1111.49001
[18] Gromov, M., Filling Riemannian manifolds, J. Differ. Geom., 18, 1, 1-147 (1983) · Zbl 0515.53037 · doi:10.4310/jdg/1214509283
[19] Hanner, O., On the uniform convexity of \(L^p\) and \(l^p\), Ark. Mat., 3, 239-244 (1956) · Zbl 0071.32801 · doi:10.1007/BF02589410
[20] Hardt, R.; Lin, F., Mappings minimizing the \(L^p\) norm of the gradient, Commun. Pure Appl. Math., 40, 5, 555-588 (1987) · Zbl 0646.49007 · doi:10.1002/cpa.3160400503
[21] Hardt, R.; Lin, F., Singularities for \(p\)-energy minimizing unit vectorfields on planar domains, Calc. Var. Partial Differ. Equ., 3, 3, 311-341 (1995) · Zbl 0828.58008 · doi:10.1007/BF01189395
[22] Jerrard, RL, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal., 30, 4, 721-746 (1999) · Zbl 0928.35045 · doi:10.1137/S0036141097300581
[23] Lee, J.M.: Introduction to Smooth Manifolds, volume 218 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2013) · Zbl 1258.53002
[24] Lee, JM, Introduction to Riemannian Manifolds. Graduate Texts in Mathematics (2018), Cham: Springer, Cham · Zbl 1409.53001 · doi:10.1007/978-3-319-91755-9
[25] Macq, A., Reberol, M., Henrotte, F., Beaufort, P.-A., Chemin, A., Remacle, J.-F., Van Schaftingen, J.: Ginzburg-Landau energy and placement of singularities in generated cross fields. arXiv:2010.16381 (2020)
[26] Marcinkiewicz, J., Sur l’interpolation d’opérations, CR Acad. Sci. Paris, 208, 1272-1273 (1939) · Zbl 0021.01601
[27] Mironescu, P.; Van Schaftingen, J., Trace theory for Sobolev mappings into a manifold, Ann. Fac. Sci. Toulouse Math. (6), 30, 2, 281-299 (2021) · Zbl 1482.46099 · doi:10.5802/afst.1675
[28] Monteil, A.; Rodiac, R.; Van Schaftingen, J., Ginzburg-Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold, Arch. Ration. Mech. Anal., 242, 2, 875-935 (2021) · Zbl 1481.35150 · doi:10.1007/s00205-021-01695-8
[29] Monteil, A.; Rodiac, R.; Van Schaftingen, J., Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains, Math. Ann., 383, 3-4, 1061-1125 (2022) · Zbl 1494.58005 · doi:10.1007/s00208-021-02204-8
[30] Müller, O., A note on closed isometric embeddings, J. Math. Anal. Appl., 349, 1, 297-298 (2009) · Zbl 1154.53032 · doi:10.1016/j.jmaa.2008.07.002
[31] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math., 2, 63, 20-63 (1956) · Zbl 0070.38603 · doi:10.2307/1969989
[32] Neff, P., A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. I. Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus, Contin. Mech. Thermodyn., 16, 6, 577-628 (2004) · Zbl 1158.74419 · doi:10.1007/s00161-004-0182-4
[33] Ponce, AC; Van Schaftingen, J., Closure of smooth maps in \(W^{1, p}(B^3;S^2)\), Differ. Integral Equ., 22, 9-10, 881-900 (2009) · Zbl 1240.46063
[34] Pu, PM, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math., 2, 55-71 (1952) · Zbl 0046.39902 · doi:10.2140/pjm.1952.2.55
[35] Sandier, E., Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152, 2, 379-403 (1998) · Zbl 0908.58004 · doi:10.1006/jfan.1997.3170
[36] Serfaty, S.; Tice, I., Lorentz space estimates for the Ginzburg-Landau energy, J. Funct. Anal., 254, 3, 773-825 (2008) · Zbl 1159.26004 · doi:10.1016/j.jfa.2007.11.010
[37] Stern, D., \(p\)-Harmonic maps to \(S^1\) and stationary varifolds of codimension two, Calc. Var. Partial Differ. Equ., 59, 6, 187,47 (2020) · Zbl 1475.58009 · doi:10.1007/s00526-020-01859-6
[38] Van Schaftingen, J.: Sobolev mappings into manifolds: nonlinear methods for approximation, extension and lifting problems. To appear (2021)
[39] Willem, M., Functional Analysis: Fundamentals and Applications. Cornerstones (2013), New York: Birkhäuser/Springer, New York · Zbl 1284.46001 · doi:10.1007/978-1-4614-7004-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.