×

Categorification: tangle invariants and TQFTs. (English) Zbl 1536.57014

Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 2. Plenary lectures. Berlin: European Mathematical Society (EMS). 1312-1353 (2023).
Topological Quantum Field Theories are the study of an interaction between mathematics and physics. “A first mathematical formulation of TQFTs goes back to M. Atiyah [Publ. Math., Inst. Hautes Étud. Sci. 68, 175–186 (1988; Zbl 0692.53053)], influenced by G. Segal [Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 359, No. 1784, 1389–1398 (2001; Zbl 1041.81094)] and E. Witten [J. Differ. Geom. 17, 661–692 (1982; Zbl 0499.53056)].”
“Based on different views on the Jones polynomial, we review representation-theoretic categorified link and tangle invariants. We unify them in a common combinatorial framework and connect them through the theory of Soergel bimodules. The influence of these categorifications on the development of 2-representation theory and the interaction between topological invariants and 2-categorical structures is discussed. Finally, we indicate how categorified representations of quantum groups, on the one hand, and monoidal 2-categories of Soergel bimodules, on the other hand, might lead to new interesting 4-dimensional TQFTs.”
For the entire collection see [Zbl 1532.00036].

MSC:

57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
18N25 Categorification
17B20 Simple, semisimple, reductive (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
05E10 Combinatorial aspects of representation theory
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes

References:

[1] M. Abouzaid and I. Smith, The symplectic arc algebra is formal. Duke Math. J. 165 (2016), no. 6, 985-1060. · Zbl 1346.53073
[2] P. Achar and C. Stroppel, Completions of Grothendieck groups. Bull. Lond. Math. Soc. 45 (2013), no. 1, 200-212. · Zbl 1271.18017
[3] M. Aganagic and S. Shakirov, Knot homology and refined Chern-Simons index. Comm. Math. Phys. 333 (2015), 187-228. · Zbl 1322.81069
[4] J. Alexander, A lemma on a system of knotted curves. Proc. Natl. Acad. Sci. USA 9 (1923), no. 3, 93-95. · JFM 49.0408.03
[5] D. Allcock, Braid pictures for Artin groups. Trans. Amer. Math. Soc. 354 (2002), no. 9, 3455-3474. · Zbl 1059.20032
[6] M. Atiyah, Topological quantum field theories. Publ. Math. Inst. Hautes Études Sci. 68 (1989), 175-189. · Zbl 0692.53053
[7] D. Ayala and J. Francis, The cobordism hypothesis. 2017, arXiv:1705.02240.
[8] J. Baez and J. Dolan, Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36 (1995), no. 11, 6073-6105. · Zbl 0863.18004
[9] J. Baez and M. Neuchl, Higher-dimensional algebra. I. Braided monoidal 2-categories. Adv. Math. 121 (1996), no. 2, 196-244. · Zbl 0855.18008
[10] D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial. Algebr. Geom. Topol. 2 (2002), 337-370. · Zbl 0998.57016
[11] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9 (2005), 1443-1499. · Zbl 1084.57011
[12] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representa-tion theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473-527. · Zbl 0864.17006
[13] A. Beliakova, M. Hogancamp, K. Putyra, and S. Wehrli, On the functoriality of sl.2/ tangle homology. 2019, arXiv:1903.12194.
[14] J. Bénabou, Introduction to bicategories. In Reports of the midwest category sem-inar, pp. 1-77, Springer, Berlin, 1967. · Zbl 1375.18001
[15] Y. Berest, P. Etingof, and V. Ginzburg, Finite-dimensional representations of rational Cherednik algebras. Int. Math. Res. Not. 19 (2003), 1053-1088. · Zbl 1063.20003
[16] J. Bernstein, I. Frenkel, and M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of U.sl 2 / via projective and Zuckerman func-tors.
[17] Selecta Math. (N.S.) 5 (1999), no. 2, 199-241. · Zbl 0981.17001
[18] J. Bernstein and V. Lunts, Equivariant sheaves and functors. Lecture Notes in Math. 1578, Springer, Berlin, 1994. · Zbl 0808.14038
[19] J. Birman, Braids, links and mapping class groups. Ann. of Math. Stud. 82, Princeton University Press, Princeton, NJ, 1974.
[20] C. Blanchet, An oriented model for Khovanov homology. J. Knot Theory Ramifi-cations 19 (2010), no. 2, 291-312. · Zbl 1195.57024
[21] A. Brochier, D. Jordan, and N. Snyder, On dualizability of braided tensor cate-gories. Compos. Math. 157 (2021), no. 3, 435-483. · Zbl 1461.18014
[22] J. Brundan, On the definition of Kac-Moody 2-category. Math. Ann. 364 (2016), no. 1-2, 353-372. · Zbl 1395.17014
[23] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels. Selecta Math. (N.S.) 14 (2008), no. 1, 1-57. · Zbl 1211.17012
[24] J. Brundan, I. Losev, and B. Webster, Tensor product categorifications and the super Kazhdan-Lusztig conjecture. Int. Math. Res. Not. 20 (2017), 6329-6410. · Zbl 1405.17045
[25] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: category O. Represent. Theory 15 (2011), 170-243. · Zbl 1261.17006
[26] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373-419. · Zbl 1243.17004
[27] J. Brundan and C. Stroppel, Semi-infinite highest weight categories. 2021, arXiv:1808.08022v4. To appear in Mem. Amer. Math. Soc.
[28] S. Cautis, J. Kamnitzer, and S. Morrison, Webs and quantum skew Howe duality. Math. Ann. 360 (2014), no. 1-2, 351-390. · Zbl 1387.17027
[29] S. Cautis and A. Lauda, Implicit structure in 2-representations of quantum groups. Selecta Math. (N.S.) 21 (2015), no. 1, 201-244. · Zbl 1370.17017
[30] Y. Chen and M. Khovanov, An invariant of tangle cobordisms via subquotients of arc rings. Fund. Math. 225 (2014), no. 1, 23-44. · Zbl 1321.57031
[31] I. Cherednik, Jones polynomials of torus knots via DAHA. Int. Math. Res. Not. 23 (2013), 5366-5425. · Zbl 1329.57019
[32] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and sl 2 -categorification. Ann. of Math. (2) 167 (2008), no. 1, 245-298. · Zbl 1144.20001
[33] D. Clark, S. Morrison, and K. Walker, Fixing the functoriality of Khovanov homology. Geom. Topol. 13 (2009), no. 3, 1499-1582. · Zbl 1169.57012
[34] B. Cooper and V. Krushkal, Categorification of the Jones-Wenzl projectors. Quantum Topol. 3 (2012), no. 2, 139-180. · Zbl 1362.57015
[35] L. Crane and I. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35 (1994), no. 10, 5136-5154. · Zbl 0892.57014
[36] L. Crane and D. Yetter, On algebraic structures implicit in topological quantum field theories. J. Knot Theory Ramifications 8 (1999), no. 2, 125-163. · Zbl 0935.57025
[37] S. Crans, Generalized centers of braided and sylleptic monoidal 2-categories. Adv. Math. 136 (1998), 183-223. · Zbl 0908.18004
[38] B. Day and R. Street, Monoidal bicategories and Hopf algebroids. Adv. Math. 129 (1997), 99-157. · Zbl 0910.18004
[39] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology. Comm. Math. Phys. 129 (1990), no. 2, 393-429. · Zbl 0703.58011
[40] N. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homolo-gies. Exp. Math. 15 (2006), 129-159. · Zbl 1118.57012
[41] M. Ehrig and C. Stroppel, On the category of finite-dimensional representations of OSp.rj2n/: Part I. Representation theory-current trends and perspectives. In EMS Ser. Congr. Rep., Eur. Math., Zürich, pp. 109-170, Amer. Math. Soc. Provi-dence, RI, 2017. · Zbl 1425.17007
[42] M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and cate-gorified skew Howe duality. Adv. Math. 331 (2018), 58-142. · Zbl 1432.16022
[43] M. Ehrig, C. Stroppel, and D. Tubbenhauer, The Blanchet-Khovanov algebras. In Categorification and higher representation theory, pp. 183-226 Contemp. Math. 683, 2017. · Zbl 1419.57024
[44] M. Ehrig, D. Tubbenhauer, and P. Wedrich, Functoriality of colored link homolo-gies. Proc. Lond. Math. Soc. 117 (2018), no. 5, 996-1040. · Zbl 1414.57010
[45] B. Elias and M. Hogancamp, On the computation of torus link homology. Compos. Math. 155 (2019), no. 1, 164-205. · Zbl 1477.57013
[46] B. Elias and M. Khovanov, Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. 978635 (2010). · Zbl 1219.18003
[47] B. Elias and D. Krasner, Rouquier complexes are functorial over braid cobor-disms. Homology, Homotopy Appl. 12 (2010), no. 2, 109-146. · Zbl 1210.57014
[48] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules. Ann. of Math. (2) 180 (2014), no. 3, 1089-1136. · Zbl 1326.20005
[49] B. Elias and G. Williamson, Soergel calculus. Represent. Theory 20 (2016), 295-374. · Zbl 1427.20006
[50] A. Ellis and A. Lauda, An odd categorification of U q .sl 2 /. Quantum Topol. 7 (2016), no. 2, 329-433. · Zbl 1391.17011
[51] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147 (2002), no. 2, 243-348. · Zbl 1061.16032
[52] D. Freed, M. Hopkins, J. Lurie, and C. Teleman, A celebration of the mathemat-ical legacy of Raoul Bott. In Topological quantum field theories from compact Lie groups, pp. 367-403, CRM Proc. Lecture Notes 50, AMS, 2010. · Zbl 1232.57022
[53] I. Frenkel, M. Khovanov, and C. Stroppel, A categorification of finite-dimensional irreducible representations of quantum sl 2 and their tensor products. Selecta Math. (N.S.) 12 (2006), no. 3-4, 379-431. · Zbl 1188.17011
[54] I. Frenkel, C. Stroppel, and J. Sussan, Categorifying fractional Euler character-istics, Jones-Wenzl projectors and 3j-symbols. Quantum Topol. 3 (2012), no. 2, 181-253. · Zbl 1256.17006
[55] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links. Bull. Am. Meteorol. Soc. 12 (1985), no. 2, 239-246. · Zbl 0572.57002
[56] R. Garner and M. Shulman, Enriched categories as a free cocompletion. Adv. Math. 289 (2016), 1-94. · Zbl 1334.18004
[57] M. Geck, Trace functions on Iwahori-Hecke algebras. In Knot theory (Warsaw, 1995), pp. 87-109, Banach Center Publ. 42, Polish Acad. Sci. Inst. Math., 1998. · Zbl 0901.57016
[58] M. Geck and S. Lambropoulou, Markov traces and knot invariants related to Iwahori-Hecke algebras of type B. J. Reine Angew. Math. 482 (1997), 191-213. · Zbl 0872.57012
[59] E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. (9) 104 (2015), no. 3, 403-435. · Zbl 1349.14012
[60] E. Gorsky, A. Oblomkov, and J. Rasmussen, On stable Khovanov homology of torus knots. Exp. Math. 22 (2013), no. 3, 265-281. · Zbl 1281.57003
[61] E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende, Torus knots and the rational DAHA. Duke Math. J. 163 (2014), no. 14, 2709-2794. · Zbl 1318.57010
[62] S. Gukov, D. Pei, and C. Vafa, BPS spectra and 3-manifold invariants. J. Knot Theory Ramifications 29 (2020), no. 2, 2040003, 85 pp. · Zbl 1448.57020
[63] S. Gukov, P. Putrov, and C. Vafa, Fivebranes and 3-manifold homology. J. High Energy Phys. 71 (2017). · Zbl 1380.58018
[64] N. Gurski, Loop spaces, and coherence for monoidal and braided monoidal bicate-gories. Adv. Math. 226 (2011), no. 5, 4225-4265. · Zbl 1260.18008
[65] R. Haugseng, Weakly enriched higher categories. Ph.D. thesis, MIT, 2013.
[66] M. Hogancamp, Categorified Young symmetrizers and stable homology of torus links. Geom. Topol. 22 (2018), no. 5, 2943-3002. · Zbl 1423.57028
[67] M. Hogancamp and A. Mellit, Torus link homology. 2019, arXiv:1909.00418.
[68] M. Jacobsson, An invariant of link cobordisms from Khovanov homology. Algebr. Geom. Topol. 4 (2004), 1211-1251. · Zbl 1072.57018
[69] T. Johnson-Freyd and C. Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories. Adv. Math. 307 (2017), 147-223. · Zbl 1375.18043
[70] V. Jones, Hecke algebra representations of braid groups and link polynomials. Ann. of Math. 126 (1987), 335-388. · Zbl 0631.57005
[71] M. Kapranov and V. Voevodsky, 2-categories and Zamolodchikov tetrahedra equations. In Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), pp. 177-259, Proc. Sympos. Pure Math. 56, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0809.18006
[72] M. Kapranov and V. Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups. J. Pure Appl. Algebra 92 (1994), no. 3, 241-267. · Zbl 0791.18010
[73] L. Kauffman, State models and the Jones polynomial. Topology 26 (1987), no. 3, 395-407. · Zbl 0622.57004
[74] L. Kauffman and S. Lins, Temperley-Lieb recoupling theory and invariants of 3-manifolds. Ann. of Math. Stud. 134, Princeton University Press, 1974.
[75] B. Keller, Deriving DG categories. Ann. Sci. Éc. Norm. Supér. 27 (1994), no. 1, 63-102. · Zbl 0799.18007
[76] M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359-426. · Zbl 0960.57005
[77] M. Khovanov, A functor-valued invariant of tangles. Algebr. Geom. Topol. 2 (2002), 665-741. · Zbl 1002.57006
[78] M. Khovanov, An invariant of tangle cobordisms. Trans. Amer. Math. Soc. 358 (2006), 315-327. · Zbl 1084.57021
[79] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules. Internat. J. Math. 18 (2007), no. 8, 869-885. · Zbl 1124.57003
[80] M. Khovanov, How to categorify one-half of quantum gl.1j2/. In Knots in Poland III, pp. 211-232, Banach Center Publ. 103, Polish Acad. Sci. Inst. Math., 2014. · Zbl 1309.81113
[81] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13 (2009), 309-347. · Zbl 1188.81117
[82] M. Khovanov and L. Rozansky, Matrix factorizations and link homology. Fund. Math. 199 (2008), no. 1, 1-91. · Zbl 1145.57009
[83] M. Khovanov and R. Thomas, Braid cobordisms, triangulated categories, and flag varieties. Homology, Homotopy Appl. 9 (2007), no. 2, 19-94. · Zbl 1119.18008
[84] T. Kildetoft and V. Mazorchuk, Parabolic projective functors in type A. Adv. Math. 301 (2016), 785-803. · Zbl 1365.17007
[85] P. Kronheimer and T. Mrowka, Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97-208. · Zbl 1241.57017
[86] G. Kuperberg, Spiders for rank 2 Lie algebras. Comm. Math. Phys. 180 (1996), no. 1, 109-151. · Zbl 0870.17005
[87] T. Lasy, Markov property and Khovanov-Rozansky homology: Coxeter case. 2012, arXiv:1202.5547.
[88] A. Lauda and A. Manion, Ozsváth-Szabó bordered algebras and subquotients of category O. Adv. Math. 376 (2021), 107455, 59 pp. · Zbl 1460.57016
[89] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131-210. · Zbl 0641.14009
[90] G. Lehrer, H. Zhang, and R. Zhang, A quantum analogue of the first fundamental theorem of classical invariant theory. Comm. Math. Phys. 301 (2011), no. 1, 131-174. · Zbl 1262.17008
[91] T. Leinster, Basic bicategories. 1998, arXiv:math/9810017.
[92] I. Losev and B. Webster, On uniqueness of tensor products of irreducible categori-fications. Selecta Math. (N.S.) 21 (2015), no. 2, 345-377. · Zbl 1359.17013
[93] J. Lurie, In On the classification of topological field theories, pp. 129-280, Curr. Dev. Math. 2008, Int. Press, Somerville, MA, 2009. · Zbl 1180.81122
[94] J. Lurie, Higher algebra. 2017, https://www.math.ias.edu/ lurie/papers/HA.pdf.
[95] G. Lusztig, Introduction to quantum groups. Modern Birkhäuser Classics, 2010.
[96] M. Mackaay, W. Pan, and D. Tubbenhauer, The sl 3 -web algebra. Math. Z. 277 (2014), no. 1-2, 401-479. · Zbl 1321.17010
[97] M. Mackaay and B. Webster, Categorified skew Howe duality and comparison of knot homologies. Adv. Math. 330 (2018), 876-945. · Zbl 1441.57014
[98] M. Mackaay and Y. Yonezawa, sl N -web categories and categorified skew Howe duality. J. Pure Appl. Algebra 223 (2019), no. 5, 2173-2229. · Zbl 1472.17058
[99] C. Mak and I. Smith, Fukaya-Seidel categories of Hilbert schemes and parabolic category O. 2019, arXiv:1907.07624.
[100] A. Manion, Trivalent vertices and bordered knot Floer homology in the standard basis. 2020, arXiv:2012.07184.
[101] A. Manion and R. Rouquier, Higher representations and cornered Heegaard Floer homology. 2020, arXiv:2009.09627.
[102] C. Manolescu, Four dimensional topology. 2020, https://web.stanford.edu/ cm5/ 4D.pdf.
[103] A. Markov, Über die freie Äquivalenz der geschlossenen Zöpfe. Rec. Math. Mosc. 43 (1936), 73-78. · Zbl 0014.04202
[104] D. Maulik, Stable pairs and the HOMFLY polynomial. Invent. Math. 204 (2016), no. 3, 787-831. · Zbl 1353.32032
[105] V. Mazorchuk, S. Ovsienko, and C. Stroppel, Quadratic duals, Koszul dual func-tors, and applications. Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129-1172. · Zbl 1229.16018
[106] V. Mazorchuk and C. Stroppel, A combinatorial approach to functorial quantum sl k knot invariants. Amer. J. Math. 131 (2009), no. 6, 1679-1713. · Zbl 1258.57007
[107] S. Morrison, K. Walker, and P. Wedrich, Invariants of 4-manifolds from Khovanov-Rozansky link homology. 2019, arXiv:1907.12194.
[108] H. Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs. Enseign. Math. (2) 44 (1998), no. 3-4, 325-360. · Zbl 0958.57014
[109] A. Oblomkov, J. Rasmussen, and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. With an appendix by E. Gorsky. Geom. Topol. 22 (2018), no. 2, 645-691. · Zbl 1388.14087
[110] A. Oblomkov and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link. Duke Math. J. 161 (2012), no. 7, 1277-1303. · Zbl 1256.14025
[111] A. Oblomkov and Z. Yun, The cohomology ring of certain compactified Jaco-bians. 2017, arXiv:1710.05391.
[112] R. Penrose, Angular momentum: an approach to combinatorial spacetime. In Quantum theory and beyond, pp. 151-180, Cambridge University Press, 1971.
[113] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients. In Spec-troscopic and group theoretical methods in physics, edited by F. Block et al., pp. 1-58, North Holland, Amsterdam, 1968.
[114] J. Przytycki and P. Traczyk, Conway algebras and Skein equivalence of links. Proc. Amer. Math. Soc. 100 (1987), 744-748. · Zbl 0638.57003
[115] H. Queffelec and D. Rose, The sl n foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality. Adv. Math. 302 (2016), 1251-1339. · Zbl 1360.57025
[116] H. Queffelec and A. Sartori, Mixed quantum skew Howe duality and link invari-ants of type A. J. Pure Appl. Algebra 223 (2019), no. 7, 2733-2779. · Zbl 1469.57013
[117] J. Rasmussen, Khovanov homology and the slice genus. Invent. Math. 182 (2010), no. 2, 419-447. · Zbl 1211.57009
[118] J. Rasmussen, Some differentials on Khovanov-Rozansky homology. Geom. Topol. 19 (2015), 3031-3104. · Zbl 1419.57027
[119] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys. 127 (1990), 1-26. · Zbl 0768.57003
[120] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), no. 3, 547-597. · Zbl 0725.57007
[121] S. Riche and G. Williamson, Tilting modules and the p-canonical basis. Astérisque 397 (2018). · Zbl 1437.20001
[122] D. Rose and D. Tubbenhauer, Symmetric webs, Jones-Wenzl recursions, and q-Howe duality. Int. Math. Res. 17 (2016), 5249-5290. · Zbl 1404.17025
[123] D. Rose and P. Wedrich, Deformations of colored sl N link homologies via foams. Geom. Topol. 20 (2016), no. 6, 3431-3517. · Zbl 1420.57044
[124] R. Rouquier, 2-Kac-Moody algebras. 2008, arXiv:0812.5023.
[125] R. Rouquier, Khovanov-Rozansky homology and 2-braid groups. In Categorifica-tion in geometry, topology, and physics, pp. 147-157, Contemp. Math. 68, AMS, 2017. · Zbl 1365.57021
[126] L. Rozansky, An infinite torus braid yields a categorified Jones-Wenzl projector. Fund. Math. 225 (2014), no. 1, 305-326. · Zbl 1336.57025
[127] A. Sartori and C. Stroppel, Categorification of tensor product representations of sl k and category O. J. Algebra 428 (2015), 256-291. · Zbl 1359.17016
[128] A. Sartori and D. Tubbenhauer, Webs and q-Howe dualities in types BCD. Trans. Amer. Math. Soc. 371 (2019), no. 10, 7387-7431. · Zbl 1472.17061
[129] C. Schommer-Pries, The classification of two-dimensional extended topological field theories. Ph.D. thesis, University of California, Berkeley, 2009.
[130] G. Segal, Topological structures in string theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359 (2001), no. 1784, 1389-1398. · Zbl 1041.81094
[131] P. Seidel and I. Smith, A link invariant from the symplectic geometry of nilpotent slices. Duke Math. J. 134 (2006), no. 3, 453-514. · Zbl 1108.57011
[132] W. Soergel, The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429 (1992), 49-74. · Zbl 0745.22014
[133] W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Poly-nomringen. J. Inst. Math. Jussieu 6 (2007), no. 3, 501-525. · Zbl 1192.20004
[134] T. Springer, Quelques applications de la cohomologie d’intersection. Bourbaki Seminar, Vol. 1981/1982. Astérisque 92 (Astérisque), 249-273. · Zbl 0526.22014
[135] C. Stroppel, Category O: gradings and translation functors. J. Algebra 268 (2003), no. 1, 301-326. · Zbl 1040.17002
[136] C. Stroppel, A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings. J. Algebra 282 (2004), no. 1, 349-367. · Zbl 1119.17004
[137] C. Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobor-disms via projective functors. Duke Math. J. 126 (2005), no. 3, 547-596. · Zbl 1112.17010
[138] C. Stroppel, Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology. Compos. Math. 145 (2009), no. 4, 954-992. · Zbl 1187.17004
[139] C. Stroppel and J. Sussan, A Lie theoretic categorification of the coloured Jones polynomial. 2021, arXiv:2109.12889.
[140] J. Sussan, Category O and sl k link invariants. Ph.D. thesis, Yale University, 2007.
[141] D. Tubbenhauer, P. Vaz, and P. Wedrich, Super q-Howe duality and web cate-gories. Algebr. Geom. Topol. 17 (2017), no. 6, 3703-3749. · Zbl 1422.57030
[142] V. Turaev and O. Viro, State sum invariants of 3-manifolds and quantum 6j -symbols. Topology 31 (1992), no. 4, 865-902. · Zbl 0779.57009
[143] B. Webster, Knot invariants and higher representation theory. Mem. Amer. Math. Soc. 250 (2017), no. 1191. · Zbl 1446.57001
[144] E. Witten, Super-symmetry and theory. J. Differential Geom. 17 (1982), no. 4, 661-692. · Zbl 0499.53056
[145] E. Witten, Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121 (1989), 351-399. · Zbl 0667.57005
[146] H. Wu, A colored sl.N / homology for links in S 3 . Dissertationes Math. 499 (2014), 1-217. · Zbl 1320.57020
[147] Catharina Stroppel Mathematical Institute, Endenicher Allee 60, 53115 Bonn, Germany, stroppel@math.uni-bonn.de
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.